Angiotensin receptor

Angiotensin receptor

angiotensin II receptor, type 1
Identifiers
Symbol AGTR1
Alt. symbols AGTR1B
IUPHAR
Entrez 185
HUGO 336
OMIM 106165
RefSeq NM_000685
UniProt P30556
Other data
Locus Chr. 3 q21-q25
angiotensin II receptor, type 2
Identifiers
Symbol AGTR2
IUPHAR
Entrez 186
HUGO 338
OMIM 300034
RefSeq NM_000686
UniProt P50052
Other data
Locus Chr. X q22-q23

The angiotensin receptors are a class of G protein-coupled receptors with angiotensin II as their ligands.[1] They are important in the renin-angiotensin system: they are responsible for the signal transduction of the vasoconstricting stimulus of the main effector hormone, angiotensin II.[2]

Contents

  • Structure 1
  • Members 2
    • Overview table 2.1
    • AT1 2.2
      • Location within the body 2.2.1
      • Mechanism 2.2.2
      • Effects 2.2.3
    • AT2 2.3
    • AT3 and AT4 2.4
  • See also 3
  • References 4
  • External links 5

Structure

The AT1 and AT2 receptors share a sequence identity of ~30%, but have a similar affinity for angiotensin II, which is their main ligand.

Members

Overview table

Receptor Mechanism[3]
AT1
AT2
AT3
AT4

Losartan is a selective AT1 antagonist,while PD123177 is a selective AT2 antagonist.Both subtypes are G-protein coupled receptor.

AT1

The AT1 receptor is the best elucidated angiotensin receptor.

Location within the body

The AT1 subtype is found in the heart, blood vessels, kidney, adrenal cortex, lung and brain and mediates the vasoconstrictor effects.

Mechanism

The angiotensin receptor is activated by the vasoconstricting peptide angiotensin II. The activated receptor in turn couples to Gq/11 and Gi/o and thus activates phospholipase C and increases the cytosolic Ca2+ concentrations, which in turn triggers cellular responses such as stimulation of protein kinase C. Activated receptor also inhibits adenylate cyclase and activates various tyrosine kinases.[2]

Effects

Effects mediated by the AT1 receptor include hypertrophy, augmentation of peripheral noradrenergic activity, vascular smooth muscle cells proliferation, decreased renal blood flow, renal renin inhibition, renal tubular sodium reuptake, modulation of central sympathetic nervous system activity, cardiac contractility, central osmocontrol and extracellular matrix formation.[4]

AT2

AT2 receptors are more plentiful in the fetus and neonate. The AT2 receptor remains enigmatic and controversial – is probably involved in vascular growth. Effects mediated by the AT2 receptor are suggested to include inhibition of cell growth, fetal tissue development, modulation of extracellular matrix, neuronal regeneration, apoptosis, cellular differentiation, and maybe vasodilation and left ventricular hypertrophy.[5]

AT3 and AT4

Other poorly characterized subtypes include the AT3 and AT4 receptors. The AT4 receptor is activated by the angiotensin II metabolite angiotensin IV, and may play a role in regulation of the CNS extracellular matrix, as well as modulation of oxytocin release.[6][7][8][9][10][11][12][13]

See also

References

  1. ^ de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000). "International union of pharmacology. XXIII. The angiotensin II receptors". Pharmacol. Rev. 52 (3): 415–72.  
  2. ^ a b Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007). "Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology". Clin. Sci. 112 (8): 417–28.  
  3. ^ Unless else specified in box, then ref is: Senselab
  4. ^ Catt KJ, Mendelsohn FA, Millan MA, Aguilera G (1984). "The role of angiotensin II receptors in vascular regulation". J. Cardiovasc. Pharmacol. 6 (Suppl 4): S575–86.  
  5. ^ D'Amore A, Black MJ, Thomas WG (December 2005). "The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy however they do imply that myocardial infarction increase hypertension in arthritis with hyperkalemia". Hypertension 46 (6): 1347–54.  
  6. ^ Albiston AL, Mustafa T, McDowall SG, Mendelsohn FA, Lee J, Chai SY (March 2003). "AT4 receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement". Trends Endocrinol. Metab. 14 (2): 72–7.  
  7. ^ Chai SY, Fernando R, Peck G, Ye SY, Mendelsohn FA, Jenkins TA, Albiston AL (November 2004). "The angiotensin IV/AT4 receptor". Cell. Mol. Life Sci. 61 (21): 2728–37.  
  8. ^ Davis CJ, Kramár EA, De A, Meighan PC, Simasko SM, Wright JW, Harding JW (2006). "AT4 receptor activation increases intracellular calcium influx and induces a non-N-methyl-D-aspartate dependent form of long-term potentiation". Neuroscience 137 (4): 1369–79.  
  9. ^ Vanderheyden PM (April 2009). "From angiotensin IV binding site to AT4 receptor". Mol. Cell. Endocrinol. 302 (2): 159–66.  
  10. ^ Beyer CE, Dwyer JM, Platt BJ, Neal S, Luo B, Ling HP, Lin Q, Mark RJ, Rosenzweig-Lipson S, Schechter LE (May 2010). "Angiotensin IV elevates oxytocin levels in the rat amygdala and produces anxiolytic-like activity through subsequent oxytocin receptor activation". Psychopharmacology (Berl.) 209 (4): 303–11.  
  11. ^ Andersson H (2010). Design and Synthesis of Angiotensin IV Peptidomimetics Targeting the Insulin-Regulated Aminopeptidase (IRAP) (Ph.D. thesis). Uppsala Universitet. Retrieved 2012-01-08. 
  12. ^ Wright JW, Harding JW (September 2011). "Brain renin-angiotensin—a new look at an old system". Prog. Neurobiol. 95 (1): 49–67.  
  13. ^ Benoist CC, Wright JW, Zhu M, Appleyard SM, Wayman GA, Harding JW (October 2011). "Facilitation of hippocampal synaptogenesis and spatial memory by C-terminal truncated Nle1-angiotensin IV analogs". J. Pharmacol. Exp. Ther. 339 (1): 35–44.  

External links