Sparfloxacin

Sparfloxacin

Sparfloxacin
Systematic (IUPAC) name
5-Amino-1-cyclopropyl-7-[(3R,5S)3,5-dimethylpiperazin-1-yl]-6,8-difluoro-4-oxo-quinoline-3-carboxylic acid
Clinical data
AHFS/Drugs.com
MedlinePlus
Pregnancy
category
  • US: C (Risk not ruled out)
Legal status
Routes of
administration
Oral
Pharmacokinetic data
Bioavailability 92%
Protein binding 45%
Metabolism Hepatic glucuronidation
Cytochrome P450 system not involved
Biological half-life 16 to 30 hours
Excretion Fecal (50%) and renal (50%)
Identifiers
CAS Registry Number  YesY
ATC code J01
PubChem CID:
DrugBank  YesY
ChemSpider  YesY
UNII  YesY
KEGG  YesY
ChEBI  YesY
ChEMBL  YesY
Chemical data
Formula C19H22F2N4O3
Molecular mass 392.41 g/mol
 YesY   

Sparfloxacin (spar FLOX a sin), trade names Spacin in Bangladesh, Zagam and Zagam Respipac, is a fluoroquinolone antibiotic used in the treatment of bacterial infections. It has a controversial safety profile.[1] Zagam is no longer available in the United States.

Contents

  • Pharmacological properties 1
  • Medical uses 2
  • Adverse drug reactions 3
  • Mechanism of action 4
  • See also 5
  • References 6

Pharmacological properties

Sparfloxacin is about 37-45% bound to proteins in the blood.[2][3]

  • Sparfloxacin achieves a high degree of penetration into most tissues, except for the central nervous system.
  • Following a single 400 mg oral dose of sparfloxacin, the mean peak concentration in cantharides-induced inflammatory fluid is 1.3 lA-g per ml after a mean duration of 5 h post-dose. Thus(overall sparfloxacin penetration into inflammatory fluid is 117% and the mean elimination half-life from this fluid is 19.7 h.[4]
  • Skin penetration of sparfloxacin is good with skin:plasma ratios of 1.00 at 4 h (time of peak plasma concentration) and 1.39 at 5 h. Following single oral doses of 100 or 200 mg, concentrations in skin of 0.56 and 0.82-1.31 lA-g per g, respectively, can be expected.[5] Sparfloxacin achieves excellent penetration into human polymorphonuclear leukocytes in vitro.[6]
  • Sparfloxacin achieves high concentrations in respiratory and sinus tissues. Following an oral loading dose of 400 mg followed by 200 mg daily, mean concentrations of sparfloxacin (2.5 to 5 h after dosing) in bronchial mucosa, epithelial lining fluid and alveolar macrophages are 4.4 µg/g, 15.0 µg/ml and 53.7 µg/g, respectively. The mean sparfloxacin concentration in maxillary sinus mucosa, 2-5 h after a single 400 mg dose, is 5.8 µg/g.[7]

Shimada et al. ( 1993) has summarized many of the studies published in Japanese regarding the tissue distribution of sparfloxacin. (high concentrations are achieved in sputum, pleural fluid, skin, lung, prostate, gynecological tissues, breast milk and otolaryngological tissues. *Salivary concentrations are 66-70% of plasma levels, while CSF penetration appears to be somewhat limited with CSF:plasma concentration ratios of only 0.25-0.35.

  • Sparfloxacin achieves concentrations in bile and gallbladder of 7.1- to 83-fold the concurrent serum levels.

In rabbits, sparfloxacin achieves very good penetration into the ocular vitreous (54%), cornea (76%) and lens (36%).[8]

Medical uses

The compound is indicated for treating community-acquired lower respiratory tract infections (acute sinusitis, exacerbations of chronic bronchitis caused by susceptible bacteria, community-acquired pneumonia).[9][10][11][12]

Adverse drug reactions

  • In a review of 2081 adult patients participating in a Phase III clinical trial of sparfloxacin in community-acquired, lower respiratory tract infections, sparfloxacin (200- or 400 mg loading dose then 100 or 200 mg daily; i.e. 200/100 mg and 400/200 mg) had a similar incidence of adverse events as the comparator agents (Rubinstein, 1996). The overall rates of drug-related adverse reactions for sparfloxacin 400/200 mg versus comparators and 200/100 mg versus the comparator (amoxycillin/clavulanic acid) were 13.7 versus 17.7%, and 9.5 versus 13.2%, respectively. However, many of these reported reactions were very minor; discontinua- tion of the antibacterial agent because of drug-related adverse reactions occurred in 1.6 versus 1.6%, and 1) versus 1.1%, respectively. Adverse reactions affecting the nervous system were reported in 5.7% of the sparfloxacin group, with insomnia and other sleep disorders the most common events.
  • Phototoxicity was noted in 2.0% of sparfloxacin recipients, with the average delay in onset being 6.3 :t 4.5 days (range 1–14 days) after commencing sparfloxacin. Mostly this consisted of erythema on the face and hands which lasted an average of 6.4 :t 4.2 days. The incidence of phototoxicity associated with sparfloxacin appears to be higher than that observed with ciprofloxacin and ofloxacin but less than that reported for fleroxacin, pefloxacin, enoxacin and nalidixic acid.
  • Most importantly, features of the hemolytic-uremic syndrome such as that associated with temafloxacin[13] have not been reported.[14][15][16][17][18]

Mechanism of action

Sparfloxacin, like other quinolones and fluoroquinolones, are bactericidal drugs, actively killing bacteria. Quinolones inhibit the bacterial DNA gyrase or the topoisomerase IV enzyme, thereby inhibiting DNA replication and transcription. Quinolones can enter cells easily and therefore are often used to treat intracellular pathogens such as Legionella pneumophila and Mycoplasma pneumoniae. For many gram-negative bacteria DNA gyrase is the target, whereas topoisomerase IV is the target for many gram-positive bacteria. Eukaryotic cells do not contain DNA gyrase or topoisomerase IV.

See also

References

  1. ^
  2. ^
  3. ^
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^
  11. ^
  12. ^
  13. ^ (p. II44)
  14. ^ Ramsay and Obershkova, 1974
  15. ^ Bowie et al., 1989
  16. ^ Davey, 1989
  17. ^ Wolfson and Hooper, 1991
  18. ^