Systematic (IUPAC) name
Methyl (2R)-2-(3,4-dichlorophenyl)-2-[(2R)-piperidin-2-yl]acetate
Clinical data
Legal status
  • Unscheduled
Routes Oral
CAS number  N (recemic)
1364331-88-3 (R, R absolute stereochemistry)
ATC code None
ChemSpider  YesY
Chemical data
Formula C14H17Cl2NO2 
Mol. mass 302.196 g/mol

3,4-Dichloromethylphenidate is a stimulant drug related to methylphenidate. Dichloromethylphenidate is a potent psychostimulant that acts as both a dopamine reuptake inhibitor and norepinephrine reuptake inhibitor, meaning it effectively boosts the levels of the norepinephrine and dopamine neurotransmitters in the brain, by binding to, and partially blocking the transporter proteins that normally remove those monoamines from the synaptic cleft

The threo-diastereomer (3,4-CTMP) is approximately seven times more potent than methylphenidate in animal studies, but has weaker reinforcing effects due to its slower onset of action.[1][2][3][4][5] However, H. M. Deutsch's discrimination ratio implies it to be more reinforcing than cocaine.[3]

See also


  1. ^ Deutsch, H.; Shi, Q.; Gruszecka-Kowalik, E.; Schweri, M. (1996). "Synthesis and pharmacology of potential cocaine antagonists. 2. Structure-activity relationship studies of aromatic ring-substituted methylphenidate analogs".  
  2. ^ Wayment, HK; Deutsch, H; Schweri, MM; Schenk, JO (1999). "Effects of methylphenidate analogues on phenethylamine substrates for the striatal dopamine transporter: potential as amphetamine antagonists?". Journal of Neurochemistry 72 (3): 1266–74.  
  3. ^ a b Schweri, MM; Deutsch, HM; Massey, AT; Holtzman, SG (2002). "Biochemical and behavioral characterization of novel methylphenidate analogs". The Journal of Pharmacology and Experimental Therapeutics 301 (2): 527–35.  
  4. ^ Davies, HM; Hopper, DW; Hansen, T; Liu, Q; Childers, SR (2004). "Synthesis of methylphenidate analogues and their binding affinities at dopamine and serotonin transport sites". Bioorganic & Medicinal Chemistry Letters 14 (7): 1799–802.  
  5. ^ Kim, D.; Deutsch, H.; Ye, X.; Schweri, M. (2007). "Synthesis and pharmacology of site-specific cocaine abuse treatment agents: restricted rotation analogues of methylphenidate".