Dopamine receptor D1

Dopamine receptor D1

Dopamine receptor D1
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols  ; DADR; DRD1A
External IDs IUPHAR: ChEMBL: GeneCards:
RNA expression pattern
Species Human Mouse
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

Dopamine receptor D1, also known as DRD1, is a protein that in humans is encoded by the DRD1 gene.[1][2][3]


This gene encodes the D1 subtype of the dopamine receptor. The D1 subtype is the most abundant dopamine receptor in the central nervous system. This G protein-coupled receptor stimulates adenylate cyclase and indirectly activates cyclic AMP-dependent protein kinases. D1 receptors regulate neuronal growth and development, mediate some behavioral responses, and modulate dopamine receptor D2-mediated events.[4] Alternate transcription initiation sites result in two transcript variants of this gene.[5]


The DRD1 gene expresses primarily in the caudate putamen in humans, and in the caudate putamen, the nucleus accumbens and the olfactory tubercle in mouse. Gene expression patterns from the Allen Brain Atlases in mouse and human can be found here.


There are a number of ligands selective for the D1 receptors. To date, most of the known ligands are based on dihydrexidine or the prototypical benzazepine partial agonist SKF-38393 (one derivative being the prototypical antagonist SCH-23390).[6] None of the known ligands is selective for the D1 vs. the D5 receptor, but the benzazepines generally are more selective for the D1 and D5 receptors versus the D2-like family.[6] Some of the benzazepines have high intrinsic activity whereas others do not.


Chemical structures of selective D1 receptor agonists.[7][8]
  • Dihydrexidine derivatives
    • A-86929 - full agonist with 14-fold selectivity for D1-like receptors over D2[6][8][9]
    • Dihydrexidine - full agonist with 10-fold selectivity for D1-like receptors over D2 that has been in Phase IIa clinical trials as a cognitive enhancer.[10][11] It also showed profound antiparkinson effects in MPTP-treated primates,[12] but caused profound hypotension in one early clinical trial in Parkinson's disease.[6] Although dihydrexidine has significant D2 properties, it is highly biased at D2 receptors and was used for the first demonstration of functional selectivity[13] with dopamine receptors.[14][15]
    • Dinapsoline - full agonist with 5-fold selectivity for D1-like receptors over D2[6]
    • Dinoxyline - full agonist with approximately equal affinity for D1-like and D2 receptors[6]
    • Doxanthrine - full agonist with 168-fold selectivity for D1-like receptors over D2[6]
  • Benzazepine derivatives
  • Others
    • A-68930
    • A-77636
    • CY-208,243 - high intrinsic activity partial agonist with moderate selectivity for D1-like over D2-like receptors, member of ergoline ligand family like pergolide and bromocriptine.
    • SKF-89145
    • SKF-89626
    • 7,8-Dihydroxy-5-phenyl-octahydrobenzo[h]isoquinoline: extremely potent, high-affinity full agonist[16]
    • Cabergoline - weak D1 agonism, highly selective for D2, and various serotonin receptors
    • Pergolide - (similar to cabergoline) weak D1 agonism, highly selective for D2, and various serotonin receptors


  • Benzazepine derivatives
    • SCH-23,390 - 100-fold selectivity for D1 over D5[6]
    • SKF-83,959 - 7-fold selectivity for D1 over D5 with negligible affinity for other receptors;[6] acts as an antagonist at D1 but as an agonist at D5
    • Ecopipam (SCH-39,166) - a selective D1/D5 antagonist that was being developed as an anti-obesity medication but was discontinued[6]

Protein-protein interactions

Dopamine receptor D1 has been shown to interact with:

Receptor oligomers

The D1 receptor forms heteromers with the following receptors: dopamine D2, D3,[19] histamine H3,[20] μ opioid.[21]

See also


  1. ^ Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG (September 1990). "Molecular cloning and expression of the gene for a human D1 dopamine receptor". Nature 347 (6288): 72–6.  
  2. ^ Zhou QY, Grandy DK, Thambi L, Kushner JA, Van Tol HH, Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O (September 1990). "Cloning and expression of human and rat D1dopamine receptors". Nature 347 (6288): 76–80.  
  3. ^ Sunahara RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang YL, Israel Y, O'Dowd BF. (September 1990). "Human dopamine D1 receptor encoded by an intronless gene on chromosome 5". Nature 347 (6288): 80–3.  
  4. ^ 1992. "D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson's disease". The Journal of Neuroscience 12 (10): 3729–3742. 
  5. ^ "1"Entrez Gene: DRD1 dopamine receptor D. 
  6. ^ a b c d e f g h i j k l m n o Zhang J, Xiong B, Zhen X, Zhang A. (2009). "Dopamine D1 receptor ligands: where are we now and where are we going.". Med Res Rev. 29 (2): 272–294.  
  7. ^ Cueva JP, Giorgioni G, Grubbs RA, Chemel BR, Watts VJ, Nichols DE (November 2006). "trans-2,3-dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline: synthesis, resolution, and preliminary pharmacological characterization of a new dopamine D1 receptor full agonist". J. Med. Chem. 49 (23): 6848–57.  
  8. ^ a b Michaelides MR, Hong Y, DiDomenico S, Asin KE, Britton DR, Lin CW, Williams M, Shiosaki K (1995). "(5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1- ena[c]-phenanthrene-9,10-diol (A-86929): a potent and selective dopamine D1agonist that maintains behavioral efficacy following repeated administration and characterization of its diacetyl prodrug (ABT-431)". J. Med. Chem. 38 (18): 3445–7.  
  9. ^ Yamashita M, Yamada K, Tomioka K (2004). "Construction of arene-fused-piperidine motifs by asymmetric addition of 2-trityloxymethylaryllithiums to nitroalkenes: the asymmetric synthesis of a dopamine D1 full agonist, A-86929". J. Am. Chem. Soc. 126 (7): 1954–5.  
  10. ^ Mu Q, Johnson K, Morgan PS, Grenesko EL, Molnar CE, Anderson B, Nahas Z, Kozel FA, Kose S, Knable M, Fernandes P, Nichols DE, Mailman RB, George MS. (2007). "A single 20 mg dose of the full D1 dopamine agonist dihydrexidine (DAR-0100) increases prefrontal perfusion in schizophrenia.". Schizophr Res. 94 (1-3): 332–341.  
  11. ^ George MS, Molnar CE, Grenesko EL, Anderson B, Mu Q, Johnson K, Nahas Z, Knable M, Fernandes P, Juncos J, Huang X, Nichols DE, Mailman RB. (2007). "A single 20 mg dose of dihydrexidine (DAR-0100), a full dopamine D1 agonist, is safe and tolerated in patients with schizophrenia.". Schizophr Res. 93 (1-3): 42–50.  
  12. ^ Taylor JR, Lawrence MS, Redmond DE Jr, Elsworth JD, Roth RH, Nichols DE, Mailman RB. (1991). "Dihydrexidine, a full dopamine D1 agonist, reduces MPTP-induced parkinsonism in monkeys.". Eur J Pharmacol. 199 (3): 389–391.  
  13. ^ Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (January 2007). "Functional selectivity and classical concepts of quantitative pharmacology". J. Pharmacol. Exp. Ther. 320 (1): 1–13.  
  14. ^ Mottola DM, Kilts JD, Lewis MM, Connery HS, Walker QD, Jones SR, Booth RG, Hyslop DK, Piercey M, Wightman RM, Lawler CP, Nichols DE, Mailman RB (June 2002). "Functional selectivity of dopamine receptor agonists. I. Selective activation of postsynaptic dopamine D2 receptors linked to adenylate cyclase". J. Pharmacol. Exp. Ther. 301 (3): 1166–78.  
  15. ^ Kilts JD, Connery HS, Arrington EG, Lewis MM, Lawler CP, Oxford GS, O'Malley KL, Todd RD, Blake BL, Nichols DE, Mailman RB (June 2002). "Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs". J. Pharmacol. Exp. Ther. 301 (3): 1179–89.  
  16. ^ Bonner LA, Chemel BR, Watts VJ, Nichols DE (September 2010). "Facile synthesis of octahydrobenzo[h]isoquinolines: novel and highly potent D1 dopamine agonists". Bioorg. Med. Chem. 18 (18): 6763–70.  
  17. ^ a b Bermak JC, Li M, Bullock C, Weingarten P, Zhou QY (Feb 2002). "Interaction of gamma-COP with a transport motif in the D1 receptor C-terminus". Eur. J. Cell Biol. 81 (2): 77–85.  
  18. ^ Bermak JC, Li M, Bullock C, Zhou QY (May 2001). "Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein". Nat. Cell Biol. 3 (5): 492–8.  
  19. ^ Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C, Drago F, Saur O, Stark H, Soriano A, Barnes C, Goldberg SR, Lluis C, Fuxe K, Franco R (2008). "Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum". J. Biol. Chem. 283 (38): 26016–25.  
  20. ^ Ferrada C, Moreno E, Casadó V, Bongers G, Cortés A, Mallol J, Canela EI, Leurs R, Ferré S, Lluís C, Franco R (2009). "Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors". Br. J. Pharmacol. 157 (1): 64–75.  
  21. ^ Juhasz JR, Hasbi A, Rashid AJ, So CH, George SR, O'Dowd BF (2008). "Mu-opioid receptor heterooligomer formation with the dopamine D1 receptor as directly visualized in living cells". Eur. J. Pharmacol. 581 (3): 235–43.  

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.