Health effects of pesticides

Health effects of pesticides

Pesticide toxicty
Classification and external resources
A sign warning about potential pesticide exposure.
ICD-10 T60
ICD-9 989.4
MedlinePlus 002430
eMedicine article/815051

Health effects of pesticides may be acute or delayed in those who are exposed.[1] A 2007 systematic review found that "most studies on non-Hodgkin lymphoma and leukemia showed positive associations with pesticide exposure" and thus concluded that cosmetic use of pesticides should be decreased.[2] Strong evidence also exists for other negative outcomes from pesticide exposure including neurological problems, birth defects, fetal death,[3] and neurodevelopmental disorder.[4]

According to The

  1. ^ U.S. Environmental Protection Agency (August 30, 2007), Pesticides: Health and Safety. National Assessment of the Worker Protection Workshop #3.
  2. ^ >Bassil KL, Vakil C, Sanborn M, Cole DC, Kaur JS, Kerr KJ (October 2007). "Cancer health effects of pesticides: systematic review". Can Fam Physician 53 (10): 1704–11.  
  3. ^ a b c d e f g Sanborn M, Kerr KJ, Sanin LH, Cole DC, Bassil KL, Vakil C (October 2007). "Non-cancer health effects of pesticides: systematic review and implications for family doctors". Can Fam Physician 53 (10): 1712–20.  
  4. ^ Jurewicz J, Hanke W (2008). "Prenatal and childhood exposure to pesticides and neurobehavioral development: review of epidemiological studies". Int J Occup Med Environ Health 21 (2): 121–32.  
  5. ^ "What are POPs?". Retrieved 2014-02-04. 
  6. ^ a b c d e Gilden RC, Huffling K, Sattler B (January 2010). "Pesticides and health risks". J Obstet Gynecol Neonatal Nurs 39 (1): 103–10.  
  7. ^ Ecobichon DJ. 1996. Toxic effects of pesticides. In: Casarett and Doull's Toxicology: The Basic Science of Poisons (Klaassen CD, Doull J, eds). 5th ed. New York:MacMillan, 643–689.
  8. ^ Lawrence, Dune (February 13, 2007), Chinese develop taste for organic food: Higher cost no barrier to safer eating. Bloomberg News, International Herald Tribune Retrieved on 2007-10-25.
  9. ^ Medline Plus (May 17, 2006), Medical Encyclopedia: Insecticide. Retrieved on September 15, 2007.
  10. ^ McCauley LA, Anger WK, Keifer M, Langley R, Robson MG, and Rohlman D (2006). "Studying health outcomes in farmworker populations exposed to pesticides". Environmental Health Perspectives 114 (3): 953–960.  
  11. ^ Van Maele-Fabry G, Lantin AC, Hoet P, Lison D (June 2010). "Childhood leukaemia and parental occupational exposure to pesticides: a systematic review and meta-analysis". Cancer Causes Control 21 (6): 787–809.  
  12. ^ Ascherio A, Chen H, Weisskopf MG, O'Reilly E, McCullough ML, Calle EE, Schwarzschild MA, Thun MJ (2006). "Pesticide exposure and risk for Parkinson's disease". Annals of Neurology 60 (2): 197–203.  
  13. ^ "Study confirms Parkinson's-pesticides link". Reuters. April 18, 2008. 
  14. ^ Baldi I, Gruber A, Rondeau V, Lebailly P, Brochard P, Fabrigoule C (November 2010). "Neurobehavioral effects of long-term exposure to pesticides: results from the 4-year follow-up of the PHYTONER Study". Occup Environ Med 68 (2): 108–115.  
  15. ^ Phillips ML (2006). "Registering skepticism: does the EPA's pesticide review protect children?". ENVIRONMENTAL HEALTH PERSPECTIVES 114 (10): A592–A595.  
  16. ^ Pulaski A (May 26, 2006), EPA workers blast agency's rulings on deadly pesticides: Letter sent to EPA administrator Stephen L. Johnson by unions representing 9,000 EPA scientists. The Oregonian, Retrieved on 2007-10-10.
  17. ^ Mascarelli, A. (2013). "Growing Up with Pesticides". Science 341 (6147): 740.  
  18. ^ Winchester, D.; Huskins, J.; Ying, J. (Apr 2009). "Agrichemicals in surface water and birth defects in the United States". Acta paediatrica (Oslo, Norway : 1992) 98 (4): 664–669.  
  19. ^ Ngo AD, Taylor R, Roberts CL, Nguyen TV (October 2006). "Association between Agent Orange and birth defects: systematic review and meta-analysis". Int J Epidemiol 35 (5): 1220–30.  
  20. ^ Ngo AD, Taylor R, Roberts CL (2010). "Paternal exposure to Agent Orange and spina bifida: a meta-analysis". Eur. J. Epidemiol. 25 (1): 37–44.  
  21. ^
  22. ^ Sheiner EK, Sheiner E, Hammel RD, Potashnik G, Carel R (April 2003). "Effect of occupational exposures on male fertility: literature review". Ind Health 41 (2): 55–62.  
  23. ^
  24. ^ Beseler CL, Stallones L, Hoppin JA, et al. (December 2008). "Depression and pesticide exposures among private pesticide applicators enrolled in the Agricultural Health Study". Environ. Health Perspect. 116 (12): 1713–9.  
  25. ^ Alavanja MC, Hoppin JA, Kamel F (2004). "Health effects of chronic pesticide exposure: cancer and neurotoxicity". Annu Rev Public Health 25: 155–97.  
  26. ^ Kamel F, Hoppin JA (June 2004). "Association of pesticide exposure with neurologic dysfunction and disease". Environ. Health Perspect. 112 (9): 950–8.  
  27. ^ Montgomery MP, Kamel F, Saldana TM, Alavanja MC, Sandler DP (May 2008). "Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993–2003". Am J Epidemiol. 167 (10): 235–46.  
  28. ^ Newswise: Long-term Pesticide Exposure May Increase Risk of Diabetes Retrieved on June 4, 2008.
  29. ^ Cornell University, College of Veterinary Medicine (March 1999), Consumer concerns about pesticides in food. Fact Sheet #24. Retrieved on 2007-10-25.
  30. ^ Codex Alimentarius Commission Code of Ethics for International Trade in Food. CAC/RCP 20-1979 (Rev. 1-1985). Retrieved on 2007-10-25.
  31. ^ U.S. Environmental Protection Agency (March 27, 2007), Pesticides and food: What the pesticide residue limits are on food. Retrieved on September 15, 2007.
  32. ^ U.S. Environmental Protection Agency (July 24, 2007), Setting tolerances for pesticide residues in foods. Retrieved on September 15, 2007.
  33. ^ Rabideau, Christine L. Multiple pesticide exposure: Immunotoxicty and oxidative tress 2001
  34. ^ Levine, Marvin J. (2007). Pesticides: A Toxic Time Bomb in our Midst. Praeger Publishers. pp. 213–214.  
  35. ^ U.S. Environmental Protection Agency (December 1999), Spray drift of pesticides. Retrieved on September 15, 2007.
  36. ^ Lockwood AH (December 2000). "Pesticides and parkinsonism: is there an etiological link?". Curr. Opin. Neurol. 13 (6): 687–90.  
  37. ^ a b c "Educational and informational strategies to reduce pesticide risks. Council on Scientific Affairs". Prev Med 26 (2): 191–200. 1997.  
  38. ^ Miller GT (2004), Sustaining the Earth, 6th edition. Thompson Learning, Inc. Pacific Grove, California. Chapter 9, Pages 211-216.
  39. ^ Jeyaratnam J (1990). "Acute pesticide poisoning: a major global health problem". World Health Stat Q 43 (3): 139–44.  
  40. ^ Gilden RC, Huffling K, Sattler B (January 2010). "Pesticides and health risks". J Obstet Gynecol Neonatal Nurs 39 (1): 103–10.  
  41. ^ Hardell L, Walker MJ, Walhjalt B, Friedman LS, Richter ED (March 2007). "Secret ties to industry and conflicting interests in cancer research". Am. J. Ind. Med. 50 (3): 227–33.  
  42. ^ Decourtye A, Devillers J (2010). "Ecotoxicity of neonicotinoid insecticides to bees". Adv. Exp. Med. Biol. 683: 85–95.  
  43. ^ Myrna E. Watanabe‌ (May 2008). "Colony Collapse Disorder: Many Suspects, No Smoking Gun". BioScience 58 (5): 384–388.  
  44. ^


See also

A number of pesticides including clothianidin, dinotefuran, imidacloprid are toxic to bees.[42] Exposure to pesticides may be one of the contributory factors to colony collapse disorder.[43] A study in North Carolina indicated that more than 30 percent of the quail tested were made sick by one aerial insecticide application. Once sick, wild birds may neglect their young, abandon their nests, and become more susceptible to predators or disease.[44]

Other animals

Concerns regarding conflict of interests regarding the research base have been raised. A number of researchers involved with pesticides have been found to have undisclosed ties to industry including: Richard Doll or the Imperial Cancer Research Fund in England and Hans-Olov Adami of the Karolinska Institute in Sweden.[41]

Society and culture

The UN Environment Programme estimate that each year, 3 million workers in agriculture in the developing world experience severe poisoning from pesticides, about 18,000 of whom die.[38] According to one study, as many as 25 million workers in developing countries may suffer mild pesticide poisoning yearly.[39] Detectable levels of 50 different pesticides were found in the blood of a representative sample of the U.S. population.[40]


The American Medical Association recommend limiting exposure to pesticides.[37] They came to this conclusion due to the fact that surveillance systems currently in place are inadequate to determine problems related to exposure.[37] The utility of applicator certification and public notification programs are also of unknown value in their ability to prevent adverse outcomes.[37]

Pesticides exposure cannot be studied in placebo controlled trials as this would be unethical.[3] A definitive cause effect relationship therefore cannot be established.[3] Consistent evidence can and has been gathered through other study designs.[3] The precautionary principle is thus frequently used in environmental law such that absolute proof is not required before efforts to decrease exposure to potential toxins are enacted.[36]


Some pesticides can remain in the environment for prolonged periods of time. For example, most people in the United States still have detectable levels of DDT in their bodies even though it was banned in the US in 1972.[6]

Exposure routes other than consuming food that contains residues, in particular pesticide drift, are potentially significant to the general public.[35]

Strawberries and tomatoes are the two crops with the most intensive use of soil fumigants. They are particularly vulnerable to several type of diseases, insects, mites, and parasitic worms. In 2003, in California alone, 3.7 million pounds (1,700 metric tons) of metham sodium were used on tomatoes. In recent years other farmers have demonstrated that it is possible to produce strawberries and tomatoes without the use of harmful chemicals and in a cost-effective way.[34]

In the United States, levels of residues that remain on foods are limited to tolerance levels that are established by the U.S. Environmental Protection Agency and are considered safe.[31] The EPA sets the tolerances based on the toxicity of the pesticide and its breakdown products, the amount and frequency of pesticide application, and how much of the pesticide (i.e., the residue) remains in or on food by the time it is marketed and prepared.[32] Tolerance levels are obtained using scientific risk assessments that pesticide manufacturers are required to produce by conducting toxicological studies, exposure modeling and residue studies before a particular pesticide can be registered, however, the effects are tested for single pesticides, and there is little information on possible synergistic effects of exposure to multiple pesticide traces in the air, food and water.[33]

In the EU, MRLs are set by DG-SANCO.

The United Nations Codex Alimentarius Commission has recommended international standards for maximum residue limits (MRLs), for individual pesticides in food.[30]

There are concerns that pesticides used to control pests on food crops are dangerous to people who consume those foods. These concerns are one reason for the pesticide residues after being washed or peeled. Chemicals that are no longer used but that are resistant to breakdown for long periods may remain in soil and water and thus in food.[29]

People can be exposed to pesticides by a number of different routes including: occupation, in the home, at school and in their food.

Route of exposure

According to researchers from the National Institutes of Health (NIH), licensed pesticide applicators who used chlorinated pesticides on more than 100 days in their lifetime were at greater risk of diabetes. One study found that associations between specific pesticides and incident diabetes ranged from a 20 percent to a 200 percent increase in risk. New cases of diabetes were reported by 3.4 percent of those in the lowest pesticide use category compared with 4.6 percent of those in the highest category. Risks were greater when users of specific pesticides were compared with applicators who never applied that chemical.[27][28]

[26][25] Additionally, studies have indicated that pesticide exposure is associated with long-term health problems such as respiratory problems, memory disorders and

Some studies have found increased risks of dermatitis in those exposed.[3]


A number of pesticides including dibromochlorophane and 2,4-D has been associated with impaired fertility in males.[22] Pesticide exposure resulted in reduced fertility in males, genetic alterations in sperm, a reduced number of sperm, damage to germinal epithelium and altered hormone function.[23]


Strong evidence links pesticide exposure to birth defects, fetal death and altered fetal growth.[3] In the United States, increase in birth defects is associated with conceiving in the same period of the year when agrochemicals are in elevated concentrations in surface water.[18] Agent Orange, a 50:50 mixture of 2,4,5-T and 2,4-D, has been associated with bad health and genetic effects in Malaya and Vietnam.[19][20] It was also found that offspring that were at some point exposed to pesticides had a low birth weight and had developmental defects.[21]

Reproductive effects

[17] The

Evidence links pesticide exposure to worsened neurological outcomes.[3] The risk of developing Parkinson's disease is 70% greater in those exposed to even low levels of pesticides.[12] People with Parkinson's were 61% more likely to report direct pesticide application than were healthy relatives. Both insecticides and herbicides significantly increased the risk of Parkinson's disease.[13] There are also concerns that long term exposures may increase the risk of dementia.[14]


Many studies have examined the effects of pesticide exposure on the risk of cancer. Associations have been found with: leukemia, lymphoma, brain, kidney, breast, prostate, pancreas, liver, lung, and skin cancers.[6] This increased risk occurs with both residential and occupational exposures.[6] Increased rates of cancer have been found among farm workers who apply these chemicals.[10] A mother's occupational exposure to pesticides during pregnancy is associated with an increases in her child's risk of leukemia, Wilms' tumor, and brain cancer.[6][11]


Long term effects

Acute health problems may occur in workers that handle pesticides, such as abdominal pain, dizziness, headaches, nausea, vomiting, as well as skin and eye problems.[7] In China, an estimated half million people are poisoned by pesticides each year, 500 of whom die.[8] Pyrethrins, insecticides commonly used in common bug killers, can cause a potentially deadly condition if breathed in.[9]

Acute effects


  • Acute effects 1
  • Long term effects 2
    • Cancer 2.1
    • Neurological 2.2
    • Reproductive effects 2.3
      • Fertility 2.3.1
    • Other 2.4
  • Route of exposure 3
  • Prevention 4
  • Epidemiology 5
  • Society and culture 6
  • Other animals 7
  • See also 8
  • References 9