Developer(s) Microsoft
Initial release July 26, 2008 (2008-07-26) (KB950050)[1][2]
Stable release R2 Service Pack 1 (KB976932) (standalone)[3][4] / March 15, 2011 (2011-03-15)
Operating system Windows 8.1, Windows Server 2012 R2, Windows 8, Windows Server 2012, Windows Server 2008 R2, Windows Server 2008
Type Native hypervisor
License Proprietary
Website /hyper-v.commicrosoft

Hyper-V, codenamed Viridian[5] and formerly known as Windows Server Virtualization, is a native hypervisor; it can create virtual machines on x86-64 systems.[6] Starting with Windows 8, Hyper-V supersedes Windows Virtual PC as the hardware virtualization component of the client editions of Windows NT.

A host server running Hyper-V could be accessed remotely by multiple guest computers. Each guest computer could perform as if they are using the host server directly. Users on the guest computers could run applications in the host server remotely, even though that application is not available on the guest computer.

A beta version of Hyper-V was shipped with certain x86-64 editions of Windows Server 2008, and a finalized version (automatically updated through Windows Update) was released on June 26, 2008.[7] Hyper-V has since been released in a free stand-alone version, and has been upgraded to Release 2 (R2) status.[8][9] It was updated in Windows Server 2012.[10]

Versions and variants

Hyper-V exists in two variants:

  1. As a stand-alone product called Hyper-V Server: Four major versions have so far been released: Hyper-V Server 2012 R2 (containing the current release of Hyper-V), Hyper-V Server 2012, Hyper-V Server 2008 R2 and Hyper-V Server 2008.
  2. As an installable role in Windows Server 2012 R2, Windows Server 2012, Windows Server 2008 R2, Windows Server 2008 and the x64 edition of Windows 8 Pro.

Microsoft made the stand-alone versions of Hyper-V available free of charge through a downloadable DVD ISO image file. Hyper-V Server 2008 was released on October 1, 2008. It is a variant of the core installation of Windows Server 2008 that includes full Hyper-V functionality; other Windows Server 2008 roles are disabled, and there are limited Windows Services.[11] The free Hyper-V Server 2008 variant is limited to a command-line interface (CLI), where configuration of the "Host" or "Parent" (Hyper-V Server 2008) OS, physical hardware and software is done using shell commands. A new menu driven CLI interface does simplify initial configuration considerably, and some freely downloadable script files extend this concept. Administration and configuration of the "Host" (Hyper-V Server 2008 OS) and the "guest" or virtual OSes is generally done by downloading extended Microsoft Management Consoles that is installed onto a Windows 7 PC or Windows 2008 Server (32 or 64 bit) or System Center Virtual Machine.

Alternatively, another Windows Server 2012 (or 2008) computer, with the Hyper-V role installed, can be used to manage Hyper-V Server 2012 (or 2008) by redirecting the management console. Other administration and configuration of Hyper-V Server 2008 can be done using a Remote Desktop RDP session (though still CLI) or redirected standard management consoles (MMC) such as "Computer Management" and "Group Policy (Local)" from a Windows Vista PC or a full installation of Windows Server 2008. This allows much easier "point and click" configuration, and monitoring of the Hyper-V Server 2008. Hyper-V Server 2008 Release 2 (R2) was made available in September 2009, its main feature being the inclusion of Windows PowerShell v2 for greater CLI control, and the updated Windows Server 2008 R2 code base. Proper configuration of the free CLI Hyper-V Server is not straight forward, often requiring CLI configuration of network interfaces, configuring Windows Firewall to enable the various Remote Management Consoles before the server can be administered. Also using a Microsoft Vista PC to administer Windows 2008 R2 Hyper-V server is not fully supported.


Hyper-V architecture

Hyper-V implements isolation of virtual machines in terms of a partition. A partition is a logical unit of isolation, supported by the hypervisor, in which each guest operating system executes. A hypervisor instance has to have at least one parent partition, running a supported version of Windows Server (2008, 2008 R2, or 2012). The virtualization stack runs in the parent partition and has direct access to the hardware devices. The parent partition then creates the child partitions which host the guest OSs. A parent partition creates child partitions using the hypercall API, which is the application programming interface exposed by Hyper-V.[12]

A child partition does not have access to the physical processor, nor does it handle its real interrupts. Instead, it has a virtual view of the processor and runs in Guest Virtual Address, which, depending on the configuration of the hypervisor, might not necessarily be the entire virtual address space. Depending on VM configuration, Hyper-V may expose only a subset of the processors to each partition. The hypervisor handles the interrupts to the processor, and redirects them to the respective partition using a logical Synthetic Interrupt Controller (SynIC). Hyper-V can hardware accelerate the address translation of Guest Virtual Address-spaces by using second level address translation provided by the CPU, referred to as EPT on Intel and RVI (formerly NPT) on AMD.

Child partitions do not have direct access to hardware resources, but instead have a virtual view of the resources, in terms of virtual devices. Any request to the virtual devices is redirected via the VMBus to the devices in the parent partition, which will manage the requests. The VMBus is a logical channel which enables inter-partition communication. The response is also redirected via the VMBus. If the devices in the parent partition are also virtual devices, it will be redirected further until it reaches the parent partition, where it will gain access to the physical devices. Parent partitions run a Virtualization Service Provider (VSP), which connects to the VMBus and handles device access requests from child partitions. Child partition virtual devices internally run a Virtualization Service Client (VSC), which redirect the request to VSPs in the parent partition via the VMBus. This entire process is transparent to the guest OS.

Virtual devices can also take advantage of a Windows Server Virtualization feature, named Enlightened I/O, for storage, networking and graphics subsystems, among others. Enlightened I/O is specialized virtualization-aware implementation of high level communication protocols like SCSI to take advantage of VMBus directly, that allows bypassing any device emulation layer. This makes the communication more efficient, but requires the guest OS to support Enlightened I/O. Windows Server 2008 R2, Windows Server 2008, Windows 7, Windows Vista, Red Hat Enterprise Linux, and SUSE Linux are currently the only operating systems that support Enlightened I/O, allowing them therefore to run faster as guest operating systems under Hyper-V than other operating systems that need to use slower emulated hardware.

System requirements

  • Host operating system:
    • To install the Hyper-V role, Windows Server 2008, Windows Server 2008 R2 Standard, Enterprise or Datacenter edition, Windows Server 2012 Standard or Datacenter edition, or Windows 8 (or 8.1) Pro or Enterprise edition is required. Hyper-V is only supported on x86-64 variants of Windows.
    • It can be installed regardless of whether the installation is a full or core installation.
  • Processor:
    • An x86-64 processor
    • Hardware-assisted virtualization support: This is available in processors that include a virtualization option; specifically, Intel VT or AMD Virtualization (AMD-V, formerly code-named "Pacifica").
    • A NX bit-compatible CPU must be available and Hardware Data Execution Prevention (DEP) must be enabled.
    • Although this is not an official requirement, Windows Server 2008 R2 and a CPU with second-level address translation support are recommended for workstations.[13]
      • Second-level address translation is a mandatory requirement for Hyper-V in Windows 8.[14]
  • Memory
    • Minimum 2 GB. (Each virtual machine requires its own memory, and so realistically much more.)
    • Windows Server 2008 Standard (x64) Hyper-V full GUI or Core supports up to 31 GB of memory for running VMs, plus 1 GB for the Hyper-V parent OS.[15]
    • Maximum total memory per system for Windows Server 2008 R2 hosts: 32 GB (Standard) or 2 TB (Enterprise, Datacenter) [16]
    • Maximum total memory per system for Windows Server 2012 hosts: 4 TB
  • Guest operating systems
    • Hyper-V in Windows Server 2008 and 2008 R2 supports virtual machines with up to 4 processors each (1, 2, or 4 processors depending on guest OS-see below)
    • Hyper-V in Windows Server 2012 supports virtual machines with up to 64 processors each.
    • Hyper-V in Windows Server 2008 and 2008 R2 supports up to 384 VMs per system[17]
    • Hyper-V in Windows Server 2012 supports up to 1024 active virtual machines per system.
    • Hyper-V supports both 32-bit (x86) and 64-bit (x64) guest VMs.

Microsoft Hyper-V Server

The stand-alone Hyper-V Server variant does not require an existing installation of Windows Server 2008 nor Windows Server 2008 R2. The standalone installation is called Microsoft Hyper-V Server for the non-R2 version and Microsoft Hyper-V Server 2008 R2. Microsoft Hyper-V server is built with components of Windows and has a Windows Server Core user experience. None of the other roles of Windows Server are available in Microsoft Hyper-V Server. This version supports up to 64 VMs per system.[18] System requirements of Microsoft Hyper-V server are the same for supported guest operating systems and processor, but differ in the following:[19]

  • RAM: Minimum: 1 GB RAM; Recommended: 2 GB RAM or greater; Maximum 1 TB.
  • Available disk space: Minimum: 8 GB; Recommended: 20 GB or greater.

Hyper-V Server 2012 R2 has the same capabilities as the standard Hyper-V role in Windows server 2012 R2 and supports 1024 active VMs. [20]

Supported guests

The following table lists supported guest operating systems on Windows Server 2008 and Windows Server 2008 R2.[21]
Guest OS Virtual processors Edition(s) CPU architecture
Windows Server 2012[1] 1–4 Enterprise, Datacenter x64
Windows Home Server 2011 1, 2 or 4 Standard x64
Windows Server 2008 R2 SP1 1–4 Web, Standard, Enterprise, Datacenter x64
Windows Server 2008 SP2 1–4 Web, HPC, Standard, Enterprise, Datacenter IA-32, x64
Windows Server 2003 SP2 1 or 2 Web,[2] Standard, Enterprise, Datacenter IA-32, x64
Windows Server 2003 R2 1 or 2 Web,[2] Standard, Enterprise, Datacenter IA-32, x64
Windows 2000 Server SP4 1 Server, Advanced Server IA-32
Windows 7 1–4 Professional, Enterprise, Ultimate IA-32, x64
Windows Vista 1 or 2 Business, Enterprise, Ultimate IA-32, x64
Windows XP SP2-SP3 1 or 2 Professional IA-32
Windows XP x64 SP2 1 or 2 N/A x64
SUSE Linux Enterprise Server 10 SP4 or 11 SP1–SP3 1–4 N/A IA-32, x64
Red Hat Enterprise Linux 5.5–7.0 1–4 N/A IA-32, x64
CentOS 5.5–7.0 1–4 N/A IA-32, x64
Ubuntu 12.04–14.04 1–4 N/A IA-32, x64
Debian 7.0 1–4 N/A IA-32, x64
Oracle Linux 6.4 1–4 Red Hat Compatible Kernel IA-32, x64
  1. ^ Windows Server 2012 is supported and runs only on a host system Windows Server 2008 R2 RTM or SP1, with a hotfix applied.
  2. ^ a b Web edition does not have an x64 version

Fedora 8 or 9 are unsupported; however, they have been reported to run.[21][22][23][24]

Third-party support for FreeBSD 8.2 and later guests is provided by a partnership between NetApp and Citrix.[25] This includes both emulated and paravirtualized modes of operation, as well as several HyperV integration services.[26]

Desktop virtualization (VDI) products from third-party companies (such as Quest Software vWorkspace, Citrix XenDesktop, Systancia AppliDis Fusion[27] and Ericom PowerTerm WebConnect) provide the ability to host and centrally manage desktop virtual machines in the data center while giving end users a full PC desktop experience.

Guest operating systems with Enlightened I/O and a hypervisor-aware kernel such as Windows Server 2008 and later server versions, Windows Vista SP1 and later clients and offerings from Citrix XenServer and Novell will be able to use the host resources better since VSC drivers in these guests communicate with the VSPs directly over VMBus.[28] Non-"enlightened" operating systems will run with emulated I/O;[29] however, integration components (which include the VSC drivers) are available for Windows Server 2003 SP2, Windows Vista SP1 and Linux to achieve better performance. Xen-enabled Linux guest distributions can also be paravirtualized in Hyper-V. As of 2013 Microsoft officially supports only SUSE Linux Enterprise Server 10 SP1/SP2 x86 and x64 Editions in this way,[30] though any Xen-enabled Linux should be able to run. In February 2008, Red Hat and Microsoft signed a virtualization pact for hypervisor interoperability with their respective server operating systems, to enable Red Hat Enterprise Linux 5 to be officially supported on Hyper-V.[31]

Linux support

In July 2009, Microsoft submitted Hyper-V drivers to the kernel, which improve the performance of virtual Linux guest systems in a Windows hosted environment. Microsoft was forced to submit the code when it was discovered that Microsoft had incorporated a Hyper-V network driver with GPL-licensed components statically linked to closed-source binaries.[32] Hyper-V provides basic virtualization support for Linux guests out of the box. Paravirtualization support is, however, available by installing the Linux Integration Components or Satori InputVSC drivers. On July 20, 2009, Microsoft submitted these drivers for inclusion in the Linux kernel under the terms of the GPL,[33] so that kernels from 2.6.32 may include inbuilt Hyper-V paravirtualization support.

Windows Server 2012

Hyper-V in Windows Server 2012 and Windows Server 2012 R2 changes the support list above as follows:[34]

  1. Windows 8 (with up to 32 CPUs), Windows 8.1 (32 CPUs), Windows Server 2012 (64 CPUs) and Windows Server 2012 R2 (64 CPUs) are supported.
  2. Minimum supported version of CentOS is 6.0.
  3. Minimum supported version of Red Hat Enterprise Linux is 5.7.
  4. Maximum number of supported CPUs for Windows Server and Linux operating system is increased from four to 64.

VHD compatibility with Virtual Server 2005 and Virtual PC 2004/2007

Hyper-V, like Microsoft Virtual Server and Windows Virtual PC, saves each guest OS to a single virtual hard disk file with the extension .VHD, except in Windows 8 and Windows Server 2012 where it can be the newer .vhdx. This file contains the entire guest OS, though other files can also be configured to allow "undo information" etc.

Older .vhd files from Virtual Server 2005 and Virtual PC 2004/2007 can be copied and used by Hyper-V, but any old virtual machine integration software (equivalents of Hyper-V Integration Services for other virtualization software) must be removed from the virtual machine. After the migrated guest OS is configured and started using Hyper-V, the guest OS will detect changes to the (virtual) hardware. Installing "Hyper-V Integration Services" installs five services to improve performance, at the same time adding the new guest video and network card drivers. Consequently, Windows guests may require re-activation.


USB passthrough

Hyper-V supports USB devices in Hyper-V guest VMs with a new feature called Virtual Machine Connection- Enhanced Session Mode.[35] This fact makes it very inconvenient to run software protected by dongles in the guest. A workaround to access USB drives in Windows guest VMs involves using the Microsoft Remote Desktop Client to "share" host drives with guests over a Remote Desktop Connection.[36][37]


Hyper-V does not virtualize audio hardware. Before Windows 8.1 and Windows Server 2012 R2, it was possible to work around this issue by connecting to the virtual machine with Remote Desktop Connection over a network connection and use its audio redirection feature.[38][39] Windows 8.1 and Windows Server 2012 R2 add the enhanced session mode which provides redirection without a network connection.[40]

Optical drives pass-through

Optical drives virtualized in the guest VM are read-only.[41] Hyper-V does not support the host/root operating system's optical drives to pass-through in guest VMs. As a result, burning to discs, audio CDs, video CD/DVD-Video playback are not supported. However a workaround exists using the iSCSI protocol. Setting up an iSCSI target on the host machine with the optical drive can then be talked to by the standard Microsoft iSCSI initiator. Microsoft produces their own iSCSI Target software or alternative third party products can be used.[42]

Graphics issues on the host

On CPUs without Second Level Address Translation, installation of most WDDM accelerated graphics drivers on the primary OS will cause a dramatic drop in graphic performance. This occurs because the graphics drivers access memory in a pattern that causes the Translation lookaside buffer to be flushed frequently.[13]

In Windows Server 2008, Microsoft officially supported Hyper-V only with the default VGA drivers,[43] which do not support Windows Aero, higher resolutions, rotation, or multi-monitor display. However, unofficial workarounds were available in certain cases. Older non-WDDM graphics drivers sometimes did not cause performance issues, though these drivers did not always install smoothly on Windows Server. Intel integrated graphics cards did not cause TLB flushing even with WDDM drivers.[44] Some NVidia graphics drivers did not experience problems so long as Windows Aero was turned off and no 3D applications were running.[13]

In Windows Server 2008 R2, Microsoft added support for Second Level Address Translation to Hyper-V. Since SLAT is not required to run Hyper-V with Windows Server,[45] the problem will continue to occur if a non-SLAT CPU is used with accelerated graphics drivers. However, SLAT is required to run Hyper-V on client versions of Windows 8.[46]

Live migration

Hyper-V in Windows Server 2008 does not support "live migration" of guest VMs (where "live migration" is defined as maintaining network connections and uninterrupted services during VM migration between physical hosts). Instead, Hyper-V on Server 2008 Enterprise and Datacenter Editions supports "quick migration", where a guest VM is suspended on one host and resumed on another host. This operation happens in the time it takes to transfer the active memory of the guest VM over the network from the first host to the second host.[47]

However, with the release of Windows Server 2008 R2, live migration is supported with the use of Cluster Shared Volumes (CSVs). This allows for failover of an individual VM as opposed to the entire host having to failover (it seems that when a node (Hyper-V server, not a VM) fails then each "VM running on the failed node" may migrate to other live nodes independently of "other VMs on the same LUN running on other nodes that share the LUN with the failed node". In Hyper-V we are clustering the Hyper-V nodes not the VMs.). See also Cluster Shared Volumes.

Windows Server 2012's implementation of Hyper-V (Version 3.0) introduced many new features to increase VM mobility, including the ability to execute simultaneous live migrations (Windows Server 2008 R2 only supported live migrating a single VM at a time, significantly increasing the time required to carry administrative tasks, such as draining a node for scheduled maintenance). The only real limiting factor here is hardware and network bandwidth available. Windows Server 2012 also supports a new "shared nothing live migration" option, where no traditional shared storage is required in order to complete a migration. Also referred to as “Live System Migration”, a shared nothing live migration will move a running VM and its storage from one Hyper-V host to another without any perceived downtime. Live Migration between different host OS versions is not possible, although this is soon to be addressed in Windows Server 2012 R2.

Windows Server 2012 also introduced the ability to use simple SMB shares as a shared storage option (in conjunction with the new Scale out File Services role in Server 2012 for highly available environments), alleviating the need for expensive SANs. This is particularly useful for low budget environments, without the need to sacrifice performance due to the many new improvements to the SMB3 stack. Windows Server 2012 will fully support the live migration of VMs running on SMB shares, whether it be a live or live system migration.

Hyper-V under Windows Server 2012 also supports the ability to migrate a running VM's storage, whereby an active Virtual Machines storage can be moved from one infrastructure to another without the VM's workload being affected, further reducing the limitations associated with VM mobility.

Degraded performance for Windows XP VMs

Windows XP frequently accesses CPU's APIC task-priority register (TPR) when interrupt request level changes, causing a performance degradation when running as guests on Hyper-V.[48] Microsoft has fixed this problem in Windows Server 2003 and later.[48]

Intel adds TPR virtualization (FlexPriority) to VT-x on Intel Core 2 step E onwards to alleviate this problem.[49] AMD has a similar feature on AMD-V but uses a new register for the purpose. This however means that the guest has to use different instructions to access this new register. AMD provides a driver called "AMD-V Optimization Driver" that has to be installed on the guest to do that.[50]

NIC teaming

Network card teaming or link aggregation is only supported if the NIC manufacturer supplied drivers support NIC teaming.[51] However, Windows Server 2012 and thus the version of Hyper-V included with it supports software NIC teaming.[52]

Administration tools

Hyper-V management tools are not compatible with Windows Vista Home Basic or Home Premium[53][53] or Windows 7 Home Premium, Home Basic or Starter.

Hyper-V 2012 can only be managed by Windows 8, Windows Server 2012 or their successors.

Windows 8

64-bit SKUs of Windows 8 Pro or Enterprise edition come with Hyper-V.[54]

Windows Server 2012

Windows Server 2012 introduced many new features in Hyper-V.[10]

  • Hyper-V Extensible Virtual Switch[55][56]
  • Network virtualization[55]
  • Multi-tenancy
  • Storage Resource Pools
  • .vhdx disk format supporting virtual hard disks as large as 64 TB[57] with power failure resiliency
  • Virtual Fibre Channel
  • Offloaded data transfer
  • Hyper-V replica[58]
  • Cross-premise connectivity
  • Cloud backup

See also


  1. ^ "Comprehensive List of Hyper-V Updates".  
  2. ^ "Description of the update for the release version of the Hyper-V technology for Windows Server 2008". Support.microsoft.com. 2010-11-22. Retrieved 2012-10-07. 
  3. ^ "Hyper-V Update List for Windows Server 2008 R2".  
  4. ^ "Information about Service Pack 1 for Windows 7 and for Windows Server 2008 R2". Support.microsoft.com. 2012-10-02. Retrieved 2012-10-07. 
  5. ^ "Microsoft to ship Windows Server 2008, over time, in eight flavors". Retrieved 2007-11-13. 
  6. ^ Paul Thurrott. "Windows Server Virtualization Preview". Retrieved 2007-09-25. 
  7. ^ "Announcement available from the Microsoft download centre". Retrieved 2008-06-26. 
  8. ^ "Microsoft Hyper-V Server". Microsoft. p. 1. Retrieved January 12, 2012. 
  9. ^ "Download: Microsoft® Hyper-V™ Server 2008 R2 SP1 - Microsoft Download Center - Download Details". Microsoft.com. 2011-12-04. Retrieved 2012-10-07. 
  10. ^ a b "Server Virtualization Features". Microsoft. Retrieved October 5, 2012. 
  11. ^ "Microsoft Helps Customers Overcome Barriers to Virtualization and Get Virtual Now". PressPass (Press release).  
  12. ^ "Benchmarking Hyper-V on Windows Server 2008 R2 x64". Retrieved 2010-01-28. 
  13. ^ a b c Armstrong, Ben. "Understanding High-End Video Performance Issues with Hyper-V". 
  14. ^ Thurott, Paul. "Q: Will Windows Server 2012 require the processor to support SLAT?". Retrieved November 5, 2011. 
  15. ^ "Memory Limits for Windows Releases (Windows)". Msdn.microsoft.com. Retrieved 2010-03-02. 
  16. ^ "Microsoft Windows Server 2008 System Requirements". Microsoft.com. Retrieved 2012-10-07. 
  17. ^ "Microsoft Hyper-V Server: Overview". Microsoft.com. Retrieved 2010-03-02. 
  18. ^ "Microsoft Hyper-V Server:Frequently asked questions". Microsoft.com. Retrieved 2012-10-07. 
  19. ^ "Microsoft Hyper-V Server: System Requirements". Microsoft.com. Retrieved 2010-03-16. 
  20. ^ "Hyper-V Server whitepaper". 
  21. ^ a b "About Virtual Machines and Guest Operating Systems for Hyper-V". Microsoft.com. Retrieved 2012-10-07. 
  22. ^ "Installing Fedora Core 8 on Hyper-V - Ben Armstrong - Site Home - MSDN Blogs". Blogs.msdn.com. 2008-01-03. Retrieved 2012-10-07. 
  23. ^ Sheinberg, Brian (2008-02-08). "First Look: Fedora 9 Alpha, Running in Hyper-V Beta". Crn.com. Retrieved 2012-10-07. 
  24. ^ "Install Ubuntu 7.10 on Hyper-V". Haiders.net. 2008-04-04. Retrieved 2012-10-07. 
  25. ^ "Available Today: FreeBSD Support for Windows Server Hyper-V". Openness@Microsoft. 2012-08-09. Retrieved 2014-05-25. 
  26. ^ "HyperV - FreeBSD Wiki". freebsd.org. Retrieved 2014-05-25. 
  27. ^ "Systancia offers application and desktop virtualization in a single product". DataMonitor. 
  28. ^ "Microsoft Windows Server 2008 – Hyper-V solution overview - Gabe Knuth". BrianMadden.com. Retrieved 2012-10-07. 
  29. ^ Stevens, Alan (2008-02-27). "Microsoft's Hyper-V: why all the fuss?".  
  30. ^ Babcock, Charles (2008-04-24). "Microsoft Hyper-V To Flaunt Advanced Virtualization Features". Informationweek.com. Retrieved 2012-10-07. 
  31. ^ Foley, Mary Jo (2009-02-16). "Microsoft and Red Hat sign virtualization pact".  
  32. ^ Foley, Mary Jo (2009-07-22). "Pigs are flying low: Why Microsoft open-sourced its Linux drivers".  
  33. ^ Ramji, Sam; Hanrahan, Tom (2009-07-20). "Microsoft Contributes Linux Drivers to Linux Community". News Center.  
  34. ^ "Hyper-V Overview".  
  35. ^ "Virtual Machine Connection - Enhanced Session Mode Overview".  
  36. ^ "Hyper-V FAQ [general]".  
  37. ^ "Known Issues with Running Windows Small Business Server 2008 in a Hyper-V Environment".  
  38. ^ Otey, Michael (24 June 2008). "Guest VM Audio Support under Hyper-V". Windows IT Pro.  
  39. ^ "Enable Audio in Windows 2008 guest machines running on HyperV". Akshat's Blog.  
  40. ^ Gear, Gavin (5 December 2013). "Overview: Client Hyper-V Enhanced Session Mode in Windows 8.1". Blogging Windows.  
  41. ^ Cook, John Paul. "DVD writer on Hyper-V server". TechNet Forums.  
  42. ^ "Using Full DVD/CD Writing Capabilities in a Hyper-V VM | Mark Gilbert's Blog". Mark-gilbert.co.uk. 2012-09-05. Retrieved 2012-10-07. 
  43. ^ "Video performance may decrease when a Windows Server 2008 or Windows Server 2008 R2 based computer has the Hyper-V role enabled and an accelerated display adapter installed". Support.microsoft.com. 2010-11-22. Retrieved 2012-10-07. 
  44. ^ Armstrong, Ben. "Hyper-V versus Desktop Computing". 
  45. ^ Finn, Aidan. "Windows Server 2012 Hyper-V DOES NOT Require SLAT (EPT/NPT) Capable Processors". 
  46. ^ Brodkin, Jon. "Hyper-V coming to Windows 8—with new hardware virtualization requirement". 
  47. ^ "Hyper-V Live Migration vs. Quick Migration". Virtualization Team. 2008-09-29. Retrieved 2012-10-07. 
  48. ^ a b "Degraded I/O Performance using a Windows XP Virtual Machine with Windows Server 2008 Hyper-V".  
  49. ^ "Enabling Intel Virtualization Technology Features and Benefits".  
  50. ^ "AmdvOpt". Processor Drivers.  
  51. ^ "Microsoft Support Policy for NIC Teaming with Hyper-V". Support.microsoft.com. 2012-01-17. Retrieved 2012-10-07. 
  52. ^ "NIC Teaming Overview". Microsoft. February 29, 2012. Retrieved October 7, 2012. 
  53. ^ a b "Install and Configure Hyper-V Tools for Remote Administration".  
  54. ^ "Fix Hyper-V Has Not Been Installed on Computer ‘localhost’". Techdracula.com. Retrieved 2013-06-06. 
  55. ^ a b "A deep dive into Hyper-V Networking (Video and Slides)". 
  56. ^ "Extending the Hyper-V switch (Video and Slides)". 
  57. ^ "Hyper-V Virtual Hard Disk Format Overview".  
  58. ^ Reseller, Mike. "Hyper-V Replica in depth".  

Further reading

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; GNU Free Documentation License; additional terms may apply; additional licensing terms may not be displayed on the current page, please review the citiational source for the most up to date information. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.

By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia is a registered trademark of the World Public Library Association, a non-profit organization.