An Australian kerosene bottle, containing blue-dyed kerosene.

Kerosene is a combustible hydrocarbon liquid widely used as a fuel, in industry, and in households. Its name is derived from Greek: κηρός (keros) meaning wax,and was registered as a trademark by Abraham Gesner in 1854 before evolving into a genericized trademark. It is sometimes spelled kerosine in scientific and industrial usage.[1] The term "kerosene" is common in much of Canada, the United States, Australia and New Zealand.[2][3]

Kerosene is usually called paraffin in the UK, Ireland, Southeast Asia and South Africa.[4] A more viscous paraffin oil is used as a laxative. A waxy solid extracted from petroleum is called paraffin wax.

Kerosene is widely used to power jet engines of aircraft (jet fuel) and some rocket engines, but is also commonly used as a cooking and lighting fuel and for fire toys such as poi. In parts of Asia, where the price of kerosene is subsidized, it fuels outboard motors on small fishing boats.[5] Kerosene lamps are widely used for lighting in rural areas of Asia and Africa where electrical distribution is not available or too costly for widespread use. World total kerosene consumption for all purposes is equivalent to about 1.2 million barrels per day.[6]

To prevent confusion between kerosene and the much more flammable gasoline, some jurisdictions regulate markings or colorings for containers in which kerosene is stored or dispensed. For example, in the United States, the Commonwealth of Pennsylvania requires that portable containers used at retail service stations be colored blue, as opposed to red (for gasoline) or yellow (for diesel fuel).[7]


Kerosene is a thin, clear liquid formed from hydrocarbons obtained from the fractional distillation of petroleum between 150 °C and 275 °C, resulting in a mixture with a density of 0.78–0.81 g/cm3 composed of carbon chains that typically contain between 6 and 16 carbon atoms per molecule.[8] It is miscible in petroleum solvents but immiscible in water.

Regardless of crude oil source or processing history, kerosene's major components are branched and straight chain alkanes and naphthenes (cycloalkanes), which normally account for at least 70% by volume. Aromatic hydrocarbons in this boiling range, such as alkylbenzenes (single ring) and alkylnaphthalenes (double ring), do not normally exceed 25% by volume of kerosene streams. Olefins are usually not present at more than 5% by volume.[9]

The flash point of kerosene is between 37 and 65 °C (100 and 150 °F), and its autoignition temperature is 220 °C (428 °F).[10] The pour point of kerosene depends on grade, with commercial aviation fuel standardized at −47 °C (−53 °F).

Heat of combustion of kerosene is similar to that of diesel; its lower heating value is 43.1 MJ/kg (around 18,500 Btu/lb), and its higher heating value is 46.2 MJ/kg.[11]

In the United Kingdom, two grades of heating oil are defined. BS2869 Class C1 is the lightest grade used for lanterns, camping stoves, wick heaters, and mixed with gasoline in some vintage combustion engines as a substitute for tractor vaporising oil. BS2869 Class C2 is a heavier distillate, which is used as domestic heating oil. Premium kerosene is usually sold in 5 or 20 liter containers from hardware, camping and garden stores and is often dyed purple. Standard kerosene is usually dispensed in bulk by a tanker and is undyed.

National and international standards define the properties of several grades of kerosene used for jet fuel. Flash point and freezing point properties are of particular interest for operation and safety; the standards also define additives for control of static electricity and other purposes.


Persian scholar Rāzi (or Rhazes) was the first to distill kerosene in the 9th century
Abraham Gesner first distilled kerosene from bituminous coal and oil shale experimentally in 1846; commercial production followed in 1854
A queue for kerosene. Moscow, Russia, 1920s

The process of distilling crude oil/petroleum into kerosene, as well as other hydrocarbon compounds, was first written about in the 9th century by the Persian scholar Rāzi (or Rhazes). In his Kitab al-Asrar (Book of Secrets), the physician and chemist Razi described two methods for the production of kerosene, termed naft abyad ("white naphtha"), using an apparatus called an alembic. One method used clay as an absorbent, whereas the other method used ammonium chloride (sal ammoniac). The distillation process was to be repeated until the final product was perfectly clear and "safe to light", i.e. volatile hydrocarbon fractions had been mostly removed. Kerosene was also produced during the same period from oil shale and bitumen by heating the rock to extract the oil, which was then distilled.[12]

Illuminating oil from coal and oil shale

Although “coal oil” was well known by industrial chemists since at least the 1700s as a byproduct of making coal gas and coal tar, it burned with a smoky flame that prevented its use for indoor illumination. In cities, much indoor illumination was provided by piped-in coal gas, but outside the cities, and for spot lighting within the cities, the lucrative market for fueling indoor lamps was supplied by whale oil, specifically that from sperm whales, which burned brighter and cleaner.[13]

In 1846, Canadian geologist Abraham Gesner gave a public demonstration in Charlottetown, Prince Edward Island of a new process he had discovered. He heated coal in a retort and distilled from it a clear, thin fluid which he showed made an excellent lamp fuel. He coined the name "Kerosene" for his fuel, a contraction of keroselaion, meaning wax-oil.[14] The cost of extracting kerosene from coal was high.

Fortunately, Gesner recalled from his extensive knowledge of New Brunswick's geology a naturally occurring asphaltum called albertite. He was blocked from using it by the New Brunswick coal conglomerate because they had coal extraction rights for the province, and he lost a court case when their experts claimed albertite was a form of coal.[15] Gesner subsequently moved to Newtown Creek, Long Island, New York, in 1854, where he secured the backing of a group of businessmen. They formed the North American Gas Light Company, to which he assigned his patents.

Despite clear priority of discovery, Gesner did not obtain his first kerosene patent until 1854, two years after James Young's US patent. Gesner's method of purifying the distillation products appears to have been superior to Young's, resulting in a cleaner and better-smelling fuel. Manufacture of kerosene under the Gesner patents began in New York in 1854 and later in Boston, being distilled from bituminous coal and oil shale.[14] Gesner registered the word "Kerosene" as a trademark in 1854, and for several years, only the North American Gas Light Company and the Downer Company (to which Gesner had granted the right) were allowed to call their lamp oil "Kerosene" in the United States.[16]

In 1848, Scottish chemist James Young experimented with oil discovered seeping in a coal mine as a source of lubricating oil and illuminating fuel. When the seep became exhausted, he experimented with the dry distillation of coal, especially the resinous "boghead coal" (torbanite). He extracted a number of useful liquids from it, one of which he named "paraffine oil", because at low temperatures, it congealed into a substance resembling paraffin wax. Young took out a patent on his process and the resulting products in 1850, and built the first truly commercial oil-works in the world at Bathgate in 1851, using oil extracted from locally mined torbanite, shale, and bituminous coal. In 1852, he took out a US patent for the same invention. These patents were subsequently upheld in both countries in a series of lawsuits, and other producers were obliged to pay him royalties.[14]

Kerosene from petroleum

In 1851, Samuel Martin Kier began selling lamp oil to local miners, under the name "Carbon Oil". He distilled this by a process of his own invention from crude oil. He also invented a new lamp to burn his product.[17] He has been dubbed the Grandfather of the American Oil Industry by historians.[18] Since the 1840s, Kier's salt wells were becoming fouled with petroleum. At first, Kier simply dumped the useless oil into the nearby Pennsylvania Main Line Canal, but later he began experimenting with several distillates of the crude oil, along with a chemist from eastern Pennsylvania.[19]

Ignacy Łukasiewicz, a Polish pharmacist residing in Lwów, had been experimenting with different distillation techniques, trying to improve on Gesner's Kerosene process, but using local seep oil. Many people knew of his work, but paid little attention to it. On the night of 31 July 1853, doctors at the local hospital needed to perform an emergency operation, virtually impossible by candlelight. They therefore sent a messenger for Łukasiewicz and his new lamps. The lamp burned so brightly and cleanly that the hospital officials ordered several lamps plus a large supply of fuel. Łukasiewicz realized the potential of his work and quit the pharmacy to find a business partner, and then travelled to Vienna to register his technique with the government. Łukasiewicz moved to the Gorlice region of Poland in 1854, and sank several wells across southern Poland over the following decade, setting up a refinery near Jasło in 1859.[20]

The petroleum discovery at the Drake Well in western Pennsylvania in 1859 caused a great deal of public excitement and investment drilling in new wells, not only in Pennsylvania, but also in Canada, where petroleum had been discovered at Oil Springs, Ontario in 1858, and southern Poland, where Ignacy Lukasiewicz had been distilling lamp oil from petroleum seeps since 1852. The increased supply of petroleum allowed oil refiners to entirely side-step the oil-from-coal patents of both Young and Gesner, and produce illuminating oil from petroleum without paying royalties to anyone. As a result, the illuminating oil industry in the US completely switched over to petroleum in the 1860s. The petroleum-based illuminating oil was widely sold as Kerosene, and the trade name soon lost its proprietary status, and became the lower-case generic product “kerosene”.[21] Because Gesner’s original Kerosene had been also known as “coal oil,” generic kerosene from petroleum continued to be called “coal oil” in the US well into the 20th century.

In the United Kingdom, manufacturing oil from coal (or oil shale) continued into the early 20th century, although increasingly overshadowed by petroleum oils.

Electric lighting started displacing kerosene as an illuminant in the late 1800s, especially in urban areas. However, kerosene remained the predominant commercial end-use for petroleum refined in the US until 1909, when it was exceeded by motor fuels. The rise of the gasoline-powered automobile in the early 1900s created a demand for the lighter hydrocarbon fractions, and refiners invented methods to increase the output of gasoline, while decreasing the output of kerosene. In addition, some of the heavier hydrocarbons that previously went into kerosene were incorporated into diesel fuel. Kerosene kept some market share by being increasingly used in stoves and portable heaters.[22]

In 2013, kerosene made up about 0.1 percent by volume of petroleum refinery output in the US.[23]


As fuel

Heating and lighting

At one time, the fuel was widely used in kerosene lamps and lanterns. Although it replaced whale oil, the 1873 edition of Elements of Chemistry said, "The vapor of this substance [kerosene] mixed with air is as explosive as gunpowder."[24] This may have been due to the common practice of adulterating kerosene with cheaper but more volatile hydrocarbon mixtures, such as naphtha.[25] Kerosene was a significant fire risk; in 1880, nearly two of every five New York City fires were caused by defective kerosene lamps.[26]

In less-developed countries kerosene is an important source of energy for cooking and lighting. It is used as a cooking fuel in portable stoves for backpackers. As a heating fuel, it is often used in portable stoves, and is sold in some filling stations. It is sometimes used as a heat source during power failures.

A truck delivering kerosene in Japan

Kerosene is widely used in Japan as a home heating fuel for portable and installed kerosene heaters. In Japan, kerosene can be readily bought at any filling station or be delivered to homes.

In the United Kingdom and Ireland, kerosene is often used as a heating fuel in areas not connected to a gas pipeline network. It is used less for cooking where LPG is preferred owing to its (LPG's) easier lighting. Kerosene is still often the fuel of choice for range cookers such as Rayburn.

The Amish, who generally abstain from the use of electricity, rely on kerosene for lighting at night.

More ubiquitous in the late 19th and early 20th centuries, kerosene space heaters were often built into kitchen ranges, and kept many farm and fishing families warm and dry through the winter. At one time, citrus growers used a smudge pot fueled by kerosene to create a pall of thick smoke over a grove in an effort to prevent freezing temperatures from damaging crops. "Salamanders" are kerosene space heaters used on construction sites to dry out building materials and to warm workers. Before the days of electrically lighted road barriers, highway construction zones were marked at night by kerosene fired, pot-bellied torches. Most of these uses of kerosene created thick black smoke because of the low temperature of combustion.

A notable exception, discovered in the early 19th century, is the use of a gas mantle mounted above the wick on a kerosene lamp. Looking like a delicate woven bag above the woven cotton wick, the mantle is a residue of mineral materials (mostly thorium dioxide) which is heated to incandescence by the flame produced by the wick. The thorium and cerium oxide combination produces both a whiter light and a greater fraction of the energy in the form of visible light than a black body at the same temperature would. These types of lamps are still in use today in areas of the world without electricity, because they give a much better light than a simple wick-type lamp does.. Recently a multipurpose lantern which also doubles as cooking stove has been introduced in India in areas which do not have electricity.[27]


Advertizement for an oil stove, from the Albion Lamp Company, Birmingham, England, c. 1900

In countries such as India and Nigeria,[28] kerosene is the main fuel used for cooking, especially by the poor, and kerosene stoves have replaced traditional wood-based cooking appliances. As such, increase in the price of kerosene can have a major political and environmental consequence. The Indian government subsidizes the fuel to keep the price very low, to around 15 US cents per liter as of February 2007, as lower prices discourage dismantling of forests for cooking fuel.[29] In Nigeria an attempt by the government to remove fuel subsidy which includes kerosene was met with strong opposition from the Nigeria populace.[30]

Kerosene is used as a fuel in portable stoves, especially in Primus stoves invented in 1892. Portable kerosene stoves earn a reputation of reliable and durable stove in everyday use, and perform especially well under adverse conditions. In outdoor activities and mountaineering, a decisive advantage of pressurized kerosene stoves over gas cartridge stoves is their particularly high thermal output and their ability to operate at very low temperature in winter or at high altitude.


In the mid-20th century, kerosene or tractor vaporising oil (TVO) was used as a cheap fuel for tractors. The engine would start on gasoline, then switch over to kerosene once the engine warmed up. A heat valve on the manifold would route the exhaust gases around the intake pipe, heating the kerosene to the point where it was vaporized and could be ignited by an electric spark.

In Europe following the Second World War, automobiles were modified similarly to run on kerosene rather than gasoline, which would have to be imported and was heavily taxed. Besides additional piping and the switch between fuels, the head gasket was replaced by a much thicker one to diminish the compression ratio (making the engine less powerful and less efficient, but able to run on kerosene). The necessary equipment was sold under the trademark "Econom".[31]

During the fuel crisis of the 1970s, Saab-Valmet developed and series-produced the Saab 99 Petro that ran on kerosene, turpentine or gasoline. The project, codenamed "Project Lapponia", was headed by Simo Vuorio, and towards the end of the 1970s, a working prototype was produced based on the Saab 99 GL. The car was designed to run on two fuels. Gasoline was used for cold starts and when extra power was needed, but normally it ran on kerosene or turpentine. The idea was that the gasoline could be made from peat using the Fischer–Tropsch process. Between 1980 and 1984, 3,756 Saab 99 Petros and 2,385 Talbot Horizons (a version of the Chrysler Horizon that integrated many Saab components) were made. One reason to manufacture kerosene-fueled cars was that in Finland kerosene was less heavily taxed than gasoline.[32]

Kerosene is used to fuel smaller-horsepower outboard motors built by Yamaha Motors, Suzuki Marine, and Tohatsu. Primarily used on small fishing craft, these are dual-fuel engines that start on gasoline and then transition to kerosene once the engine reaches optimum operating temperature. Multiple fuel Evinrude and Mercury Racing engines also burn kerosene, as well as jet fuel.[33]

Today, kerosene is mainly used in fuel for jet engines in several grades. One form of the fuel known as RP-1 is burned with liquid oxygen as rocket fuel. These fuel grade kerosenes meet specifications for smoke points and freeze points. The combustion reaction can be approximated as follows, with the molecular formula C12H26 (dodecane):

2 C12H26(l) + 37 O2(g) → 24 CO2(g) + 26 H2O(g); H˚ = -7513 kJ

In the initial phase of liftoff, the Saturn V launch vehicle was powered by the reaction of liquid oxygen with RP-1.[34] For the five 6.4 meganewton sea-level thrust F-1 rocket engines of the Saturn V, burning together, the reaction generated roughly 1.62 × 1011 watts (J/s) (162 gigawatt) or 217 million horsepower.[34]

Kerosene is sometimes used as an additive in diesel fuel to prevent gelling or waxing in cold temperatures.[35]

Ultra-low sulfur kerosene is a custom-blended fuel used by the New York City Transit to power its bus fleet. The transit agency started using this fuel in 2004, prior to the widespread adoption of ultra-low sulfur diesel, which has since become the standard. In 2008, the suppliers of the custom fuel failed to tender for a renewal of the transit agency's contract, leading to a negotiated contract at a significantly increased cost.[36]

In chemistry

In X-ray crystallography, kerosene can be used to store crystals. When a hydrated crystal is left in air, dehydration may occur slowly. This makes the colour of the crystal become dull. Kerosene can keep air from the crystal.

It can be also used to prevent air from re-dissolving in a boiled liquid.,[37] and to store potassium, sodium, lithium, etc.

In entertainment

Kerosene is often used in the entertainment industry for fire performances, such as fire breathing, fire juggling or poi, and fire dancing. Because of its low flame temperature when burnt in free air, the risk is lower should the performer come in contact with the flame. Kerosene is generally not recommended as fuel for indoor fire dancing, as it produces an unpleasant (to some) odor, which becomes poisonous in sufficient concentration. Ethanol was sometimes used instead, but the flames it produces look less impressive, and its lower flash point poses a high risk.

In industry

As a petroleum product miscible with many industrial liquids, kerosene can be used as both a solvent, able to remove other petroleum products, such as chain grease, and as a lubricant, with less risk of combustion when compared to using gasoline. It can also be used as a cooling agent in metal production and treatment (oxygen-free conditions).[38]

In the petroleum industry, kerosene is often used as a synthetic hydrocarbon for corrosion experiments to simulate crude oil in field conditions.

Kerosene has been found to be an effective pesticide. It is effective at killing a large number of insects, notably bed bugs and head lice. It can also be applied to standing pools of water in order to kill mosquito larvae.


Kerosene can be applied topically to hard-to-remove mucilage or adhesive left by stickers on a glass surface (such as in show windows of stores).[37]

It can be used to remove candle wax that has dripped onto a glass surface; it is recommended that the excess wax be scraped off prior to applying kerosene via a soaked cloth or tissue paper.[37]

It can be used to clean bicycle and motorcycle chains of old lubricant before relubrication.[37]


Ingestion of kerosene is harmful or fatal. Kerosene is sometimes recommended as a folk remedy for killing head lice, but health agencies warn against this because it can cause burns and serious illness. A kerosene shampoo can even be fatal if fumes are inhaled.[39][40]

See also


  1. ^ "Kerosene". Webster's New World College Dictionary. 
  2. ^ "Kerosene". Oxford English Dictionary. 
  3. ^ Anonymous (August 2006). "Environmental Protection Agency lists new kerosene-labeling rules". National Petroleum News 98 (9). Retrieved 14 December 2012. 
  4. ^
  5. ^ "Kerosene Outboard Motors". Retrieved 25 October 2011. 
  6. ^ International Energy Statistics. US Department of Energy
  7. ^ "Pennsylvania Combustible and Flammable Liquids Act". Retrieved 28 April 2014. 
  8. ^ Collins, Chris (2007). "Implementing Phytoremediation of Petroleum Hydrocarbons". Methods in Biotechnology (Humana Press) (23): 99–108.  
  9. ^ American Institute of Petroleum (September 2010). "Kerosene/Jet Fuel Assessment Document". EPA. p. 8. Retrieved 2010. 
  10. ^ "Kerosene". Retrieved 10 June 2009. 
  11. ^ Annamalai, Kalyan; Ishwar Kanwar Puri (2006). Combustion Science and Engineering. CRC Press. p. 851.  
  12. ^ Bilkadi, Zayn. "The Oil Weapons".  
  13. ^ Samuel T. Pees, Whale oil versus the others, Petroleum History Institute, accessed 17 November 2014.
  14. ^ a b c Russell, Loris S. (2003). A Heritage of Light: Lamps and Lighting in the Early Canadian Home. University of Toronto Press.  
  15. ^ Black, Harry (1997). Canadian Scientists and Inventors. Pembroke Publishers.  
  16. ^ Asbury, Herbert (1942). The golden flood: an informal history of America's first oil field. Alfred A. Knopf. p. 35. 
  17. ^ World, American Manufacturer and Iron (1901). Greater Pittsburgh and Allegheny County, Past, Present, Future; The Pioneer Oil Refiner. The American Manufacturer and Iron World. 
  18. ^ McInnis, Karen. "Kier, Samuel Martin- Bio". biography. The Pennsylvania State University. Retrieved 12 December 2008. 
  19. ^ Harper, J. A. (1995). "Samuel Kier – Medicine Man & Refiner" (Excerpt from Yo-Ho-Ho and a Bottle of Unrefined Complex Liquid Hydrocarbons). Pennsylvania Geology (Oil Region Alliance of Business, Industry & Tourism) 26 (1). Retrieved 12 December 2008. 
  20. ^ Steil, Tim; Luning, Jim (2002). Fantastic Filling Stations. MBI Publishing. pp. 19–20.  
  21. ^ Paul Lucier, Scientists & Swindlers (Baltimore: Johns Hopkins, 2008)232-233.
  22. ^ Harold F. Williamson and others, The American Petroleum Industry: the Age of Energy, 1899-1959 (Evanston, Ill.: Northwestern Univ. Press, 1963) 170, 172, 194, 204.
  23. ^ US EIA, Refinery yield, accessed 29 Nov. 2014.
  24. ^ Cooley, Le Roy Clark (1873). Elements of Chemistry: for Common and High Schools. Scribner, Armstrong. p. 98. 
  25. ^ Crew, Benjamin Johnson; Ashburner, Charles Albert (1887). A Practical Treatise on Petroleum. Baird. pp. 395. This reference uses "benzene" in the obsolescent generic sense of a volatile hydrocarbon mixture, now called benzine, petroleum ether, ligroin, or naphtha, rather than the modern meaning of  
  26. ^ Bettmann, Otto (1974). The Good Old Days & ndash; They Were Terrible!. Random House. p. 34.  
  27. ^ Lanstove:A lamp that's also a stove
  28. ^ Oyekale, A. S.; Dare, A. M.; Olugbire, O. O. (2012). "Assessment of rural households cooking energy choice during kerosene subsidy in Nigeria: A case study of Oluyole Local Government Area of Oyo State". African Journal of Agricultural Research 7 (39).  
  29. ^ Bradsher, Keith (28 July 2008). "Fuel Subsidies Overseas Take a Toll on U.S.". New York Times. 
  30. ^ Ibikun, Yinka (25 July 2011). "Nigeria Kerosene Too Expensive For Oil-Rich Country's Poor". Huffington Post. 
  31. ^ Popular Science: 193. December 1951. 
  32. ^ Bakrutan: "Saab 99 Petro" by Petri Tyrkös, n. 4, 2008
  33. ^ Banse, Timothy (7 July 2010). "Kerosene Outboards: An Alternative Fuel?". Marine Engine Digest. 
  34. ^ a b Ebbing, Darrell. General Chemistry. Cengage Learning. pp. 251–.  
  35. ^ Kerosene blending, (pdf from EPA)
  36. ^ "How a Plan for Bus Fuel Grew Expensive". The New York Times. 25 September 2008. 
  37. ^ a b c d Kerosene: Other uses: Miscellaneous.
  38. ^ "Oil atomisation puts a different face on iron alloy powders". Metal Powder Report 59 (10): 26–06. 2004.  
  39. ^ Levine, Michael D; Gresham, Chip, III (30 April 2009). "Toxicity, Hydrocarbons". emedicine. Retrieved 1 December 2009. 
  40. ^ Mahdi, Awad Hassan (1988). "Kerosene Poisoning in Children in Riyadh". Journal of Tropical Pediatrics (Oxford University Press) 34 (6): 316–318.  

External links

  • "Kerosene", Webster Online Dictionary
  • Article on Gesner
  • Kerosene Fuel Primer
  • San Diego Union-Tribune Article
  • Material Safety Data Sheet
  • CDC – NIOSH Pocket Guide to Chemical Hazards