NIAID ChemDB

NIAID ChemDB

ChemDB HIV, Opportunistic Infection and Tuberculosis Therapeutics Database
Content
Description Small molecules that have been tested against HIV and/or related opportunistic infections
Contact
Research center National Institute of Allergy and Infectious Disease (NIAID)
Release date 1989
Access
Website http://chemdb.niaid.nih.gov/
Tools
Miscellaneous

The ChemDB HIV, Opportunistic Infection and Tuberculosis Therapeutics Database is a publicly available tool developed by the National Institute of Allergy and Infectious Diseases to compile preclinical data on small molecules with potential therapeutic action against HIV/AIDS and related opportunistic infections.[1]

Characteristics and content

Since 1989, the ChemDB has been updated with information extracted from peer-reviewed published literature, conference proceedings and patents.[2] Data are compiled on compound structure, chemical properties, biological activity (e.g. targeted protein, IC50, EC50, Cytotoxicity, TI, Ki, and or MIC), and reference details (e.g. Author, Journal).[3]

The ChemDB web interface supports searching of biological, textual and chemical data using [10][11][12][13]

Opportunistic pathogens

Opportunistic pathogens included in this database are:[1]

SIV
FIV
Human Cytomegalovirus (HCMV)
Epstein-Barr virus
Herpes simplex virus 1
Herpes simplex virus 2
Kaposi sarcoma virus
Hepatitis A virus
Hepatitis B virus
Hepatitis C virus
Mycobacterium spp.
Pneumocystis carinni
Cryptococcus spp.
Candida spp.
Aspergillus spp.
Microsporidia
Toxoplasma gondii
Cryptosporidium parvum
Leishmania spp.
Plasmodium spp.

References

  1. ^ a b c "Division of AIDS Anti-HIV/OI/TB Therapeutics Database". National Institutes of Health, U.S. Department of Health and Human Services. Retrieved 2012-01-24. 
  2. ^ a b Rush M, Huffman D, Noble G, Whiting M, Nasr M (August 25–26, 2011). "The NIAID ChemDB HIV/AIDS Database". 
  3. ^ "Division of AIDS Anti-HIV/OI/TB Therapeutics Database". User Guide. National Institutes of Health, U.S. Department of Health and Human Services. Retrieved 2012-01-24. 
  4. ^ Hochstein C, Goshorn J, Chang F (2009). "United States National Library of Medicine Drug Information Portal". Med Ref Serv Q 28 (2).  
  5. ^ Cheah ELC, Heng PWS, Chan LW (2010). "Optimization of supercritical fluid extraction and pressurized liquid extraction of active principles from Magnolis officinalis using the Taguchi design". Sep Purif Technol 71 (3): 293–301.  
  6. ^ Portugal J (2009). "Evaluation of molecular descriptors for antitumor drugs with respect to noncovalent binding to DNA and antiproliferative activity". BMC Pharmacol 9: 11.  
  7. ^ Xiong S, Fan J, Kitazato K (2010). "The antiviral protein cyanovirin-N: the current state of its production and applications". Appl Microbiol Biotechnol 86 (3): 805–12.  
  8. ^ Kremb S, Helfer M, Heller W, Hoffmann D, Wolff H, Kleinschmidt A, Cepok S, Hemmer B, Durner J, Brack-Werner R (2010). "EASY-HIT: HIV full-replication technology for broad discovery of multiple classes of HIV inhibitors". Antimicrob Agents Chemother 54 (12): 5257–68.  
  9. ^ Serafin K, Mazur P, Bak A, Laine E, Tchertanov L, Mouscadet JF, Polanski J (2011). "Ethyl malonate amides: a diketo acid offspring fragment for HIV integrase inhibition". Bioorg Med Chem 19 (16): 5000–5.  
  10. ^ Durdagi S, Mavromoustakos T, Papdopoulos MG (2008). "3D QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies of fullerene-based HIV-1 PR inhibitors". Bioorg Med Chem Lett 18 (23): 6283–9.  
  11. ^ Prasanna MD, Vondrasek J, Wlodawer A, Bha TN (2005). "Application of InChI to Curate, Index, and Query 3-D Structure". Proteins 60: 001–004.  
  12. ^ Sánchez R, Morgado E, Grau R (2005). "A genetic code Boolean structure. I. The meaning of Boolean deduction". B Math Biol 67: 001–014.  
  13. ^ Zhang XW (2005). "Generation of predictive pharmacophore model for SARS-coronavirus main proteinase". Eur J Med Chem 40: 57–62.  

External links

  • NIAID ChemDB [1]