Observations and explorations of Venus

Observations and explorations of Venus

Venus in attempted depiction as it might appear to the naked eye
A photograph of the night sky taken from the seashore. A glimmer of sunlight is on the horizon. There are many stars visible. Venus is at the center, much brighter than any of the stars, and its light can be seen reflected in the ocean.
Venus is always brighter than the brightest stars outside the Solar System, as can be seen here over the Pacific Ocean

Phases of Venus and evolution of its apparent diameter

Observations of the planet Venus include those in antiquity, telescopic observations, and from visiting spacecraft. Spacecraft have performed various flybys, orbits, and landings on Venus, including balloon probes that floated in the atmosphere of Venus. Study of the planet is aided by its relatively close proximity to the Earth, compared to other planets, but the surface of Venus is obscured by an atmosphere opaque to visible light.


  • Historical observations and impact 1
    • Mesopotamia 1.1
    • Asia 1.2
    • Egypt 1.3
    • Greeks and Romans 1.4
    • Persia 1.5
    • Maya 1.6
    • Other cultures 1.7
    • Impact on literature 1.8
  • Phases 2
  • Transit and early terrestrial observations 3
  • Terrestrial radar mapping 4
  • Observation by spacecraft 5
    • Early flybys 5.1
    • Early landings 5.2
    • Lander/orbiter pairs 5.3
      • Venera 9 and 10 5.3.1
      • Pioneer Venus 5.3.2
      • Further Soviet missions 5.3.3
    • Orbiters 5.4
      • Venera 15 and 16 5.4.1
      • Magellan 5.4.2
      • Venus Express 5.4.3
      • Akatsuki 5.4.4
    • Recent flybys 5.5
    • Future missions 5.6
    • Proposals 5.7
  • Timeline of Venus exploration 6
    • Past missions 6.1
    • Current missions 6.2
    • Future missions 6.3
      • Under study 6.3.1
  • See also 7
  • Notes 8
  • References 9
  • External links 10

Historical observations and impact

Venus as a brilliant "Evening Star" next to crescent moon


As one of the brightest objects in the sky, Venus has been known since prehistoric times and as such has gained an entrenched position in human culture. It is described in Babylonian cuneiformic texts such as the Venus tablet of Ammisaduqa, which relates observations that possibly date from 1600 BCE.[1] The Babylonians named the planet Ishtar (Sumerian Inanna), the personification of womanhood, and goddess of love.[2] She had a dual role as a goddess of war, thereby representing a deity that presided over birth and death.[3] One of the oldest surviving astronomical documents, from the Babylonian library of Ashurbanipal around 1600 BC, is a 21-year record of the appearances of Venus (which the early Babylonians called Nindaranna).

The ancient Sumerians and Babylonians called Venus Dil-bat or Dil-i-pat; in Akkadia it was the special star of the mother-god Ishtar.


In Chinese the planet is called Jīn-xīng (金星), the golden planet of the metal element, in India Shukra Graha ("the planet Shukra") which is named after a powerful saint Shukra. Shukra which is used in Indian Vedic astrology[4] means "clear, pure" or "brightness, clearness" in Sanskrit. One of the nine Navagraha, it is held to affect wealth, pleasure and reproduction; it was the son of Bhrgu, preceptor of the Daityas, and guru of the Asuras.[5] The word Shukra is also associated with semen, or generation.


The Ancient Egyptians believed Venus to be two separate bodies and knew the morning star as Tioumoutiri and the evening star as Ouaiti.[6]

Greeks and Romans

Likewise, believing Venus to be two bodies, the Ancient Greeks called the morning star Φωσφόρος, Phosphoros (Latinized Phosphorus), the "Bringer of Light" or Ἐωσφόρος, Eosphoros (Latinized Eosphorus), the "Bringer of Dawn". The evening star they called Hesperos (Latinized Hesperus) (Ἓσπερος, the "star of the evening").[7] By Hellenistic times, the ancient Greeks realized the two were the same planet,[8][9] which they named after their goddess of love, Aphrodite (Αφροδίτη) (Phoenician Astarte),[10] a planetary name that is retained in modern Greek.[11] Hesperos would be translated into Latin as Vesper and Phosphoros as Lucifer ("Light Bearer"), a poetic term later used to refer to the fallen angel cast out of heaven.[1] Pythagoras is credited with the realization of the fact of the two appearances being the same planet.

The Romans, who derived much of their religious pantheon from the Greek tradition, named the planet Venus after their goddess of love.[12] Pliny the Elder (Natural History, ii,37) identified the planet Venus with Isis.[13]

Shukra is the Sanskrit name for Venus
The Pre-Columbian Mayan Dresden Codex, which calculates Venus appearances


In Iranian mythology, especially in Persian mythology, the planet usually corresponds to the goddess Anahita. In some parts of Pahlavi literature the deities Aredvi Sura and Anahita are regarded as separate entities, the first one as a personification of the mythical river and the latter as a goddess of fertility, which is associated with the planet Venus. As the goddess Aredvi Sura Anahita—and simply called Anahita as well—both deities are unified in other descriptions, e. g. in the Greater Bundahishn, and are represented by the planet. In the Avestan text Mehr Yasht (Yasht 10) there is a possible early link to Mithra. The Persian name of the planet today is "Nahid", which derives from Anahita and later in history from the Pahlavi language Anahid.[14][15][16][17]


Venus was considered the most important celestial body observed by the Maya, who called it Chac ek,[18] or Noh Ek', "the Great Star". The Maya monitored the movements of Venus closely and observed it in daytime. The positions of Venus and other planets were thought to influence life on Earth, so the Maya and other ancient Mesoamerican cultures timed wars and other important events based on their observations. In the Dresden Codex, the Maya included an almanac showing Venus's full cycle, in five sets of 584 days each (approximately eight years), after which the patterns repeated (since Venus has a synodic period of 583.92 days).[19]

The Maya civilization developed a religious calendar, based in part upon the motions of the planet, and held the motions of Venus to determine the propitious time for events such as war. They also named it Xux Ek', the Wasp Star. The Maya were aware of the planet's synodic period, and could compute it to within a hundredth part of a day.[20]

Other cultures

The Maasai people named the planet Kileken, and have an oral tradition about it called The Orphan Boy.[21]

Venus is important in many Australian aboriginal cultures, such as that of the Yolngu people in Northern Australia. The Yolngu gather after sunset to await the rising of Venus, which they call Barnumbirr. As she approaches, in the early hours before dawn, she draws behind her a rope of light attached to the Earth, and along this rope, with the aid of a richly decorated "Morning Star Pole", the people are able to communicate with their dead loved ones, showing that they still love and remember them. Barnumbirr is also an important creator-spirit in the Dreaming, and "sang" much of the country into life.[22]

Venus plays a prominent role in Pawnee mythology. The Pawnee, a North American native tribe, until as late as 1838, practised a morning star ritual in which a girl was sacrificed to the morning star.[23]

In western astrology, derived from its historical connotation with goddesses of femininity and love, Venus is held to influence desire and sexual fertility.[24]

Modern Chinese, Japanese and Korean cultures refer to the planet literally as the "metal star" (金星), based on the Five elements.[25][26][27]

In the metaphysical system of Theosophy, it is believed that on the etheric plane of Venus there is a civilization that existed hundreds of millions of years before Earth's[28] and it is also believed that the governing deity of Earth, Sanat Kumara, is from Venus.[29]

Impact on literature

The impenetrable Venusian cloud cover gave science fiction writers free rein to speculate on conditions at its surface; all the more so when early observations showed that not only was it similar in size to Earth, it possessed a substantial atmosphere. Closer to the Sun than Earth, the planet was frequently depicted as warmer, but still habitable by humans.[30] The genre reached its peak between the 1930s and 1950s, at a time when science had revealed some aspects of Venus, but not yet the harsh reality of its surface conditions. Findings from the first missions to Venus showed the reality to be quite different, and brought this particular genre to an end.[31] As scientific knowledge of Venus advanced, so science fiction authors tried to keep pace, particularly by conjecturing human attempts to terraform Venus.[32]

Perhaps the strangest appearance of Venus in popular culture is as the harbinger of destruction in Immanuel Velikovsky's Worlds in Collision (1950). In this intensely controversial book, Velikovsky argued that many seemingly unbelievable stories in the Old Testament are true recollections of times when Venus, which Velikovsky claimed had somehow been ejected from Jupiter as a comet, nearly collided with the Earth. He contended that Venus caused most of the strange events of the Exodus story. He cites legends in many other cultures (such as Greek, Mexican, Chinese and Indian) indicating that the effects of the near-collision were global. The scientific community rejected his wildly unorthodox book, but it became a bestseller.[33]


Phases of Venus

Because its orbit takes it between the Earth and the Sun, Venus as seen from Earth exhibits visible phases in much the same manner as the Earth's Moon. Galileo Galilei was the first person to observe the phases of Venus in December 1610, an observation which supported Copernicus's then contentious heliocentric description of the Solar System. He also noted changes in the size of Venus's visible diameter when it was in different phases, suggesting that it was farther from Earth when it was full and nearer when it was a crescent. This observation strongly supported the heliocentric model. Venus (and also Mercury) is not visible from Earth when it is full, since at that time it is at superior conjunction, rising and setting concomitantly with the Sun and hence lost in the Sun's glare.

Venus is brightest when approximately 25% of its disk is illuminated; this typically occurs 37 days both before (in the evening sky) and after (in the morning sky), its inferior conjunction. Its greatest elongations occur approximately 70 days before and after inferior conjunction, at which time it is half full; between these two intervals Venus is actually visible in broad daylight, if the observer knows specifically where to look for it. The planet's period of retrograde motion is 20 days on either side of the inferior conjunction. In fact, through a telescope Venus at greatest elongation appears less than half full due to Schröter's effect first noticed in 1793 and shown in 1996 as due to its thick atmosphere.

Venus in daylight at 5 p.m. in the southern hemisphere - December 2005

On rare occasions, Venus can actually be seen in both the morning (before sunrise) and evening (after sunset) on the same day. This scenario arises when Venus is at its maximum separation from the ecliptic and concomitantly at inferior conjunction; then one hemisphere (Northern or Southern) will be able to see it at both times. This opportunity presented itself most recently for Northern Hemisphere observers within a few days on either side of March 29, 2001, and for those in the Southern Hemisphere, on and around August 19, 1999. These respective events repeat themselves every eight years pursuant to the planet's synodic cycle.

Transit and early terrestrial observations

Transits of Venus, when the planet crosses directly between the Earth and the Sun's visible disc, are rare astronomical events. The first such transit to be predicted and observed was the Transit of Venus, 1639, seen and recorded by English astronomers Jeremiah Horrocks and William Crabtree. The observation by Mikhail Lomonosov of the transit of 1761 provided the first evidence that Venus had an atmosphere, and the 19th-century observations of parallax during Venus transits allowed the distance between the Earth and Sun to be accurately calculated for the first time. Transits can only occur either in early June or early December, these being the points at which Venus crosses the ecliptic (the orbital plane of the Earth), and occur in pairs at eight-year intervals, with each such pair more than a century apart. The previous pair of transits of Venus occurred in 1874 and 1882, and the current pair is in 2004 and 2012.

In the 19th century, many observers stated that Venus had a period of rotation of roughly 24 hours. Italian astronomer Giovanni Schiaparelli was the first to predict a significantly slower rotation, proposing that Venus was tidally locked with the Sun (as he had also proposed for Mercury). While not actually true for either body, this was still a reasonably accurate estimate. The near-resonance between its rotation and its closest approach to Earth helped to create this impression, as Venus always seemed to be facing the same direction when it was in the best location for observations to be made. The rotation rate of Venus was first measured during the 1961 conjunction, observed by radar from a 26 m antenna at Goldstone, California, the Jodrell Bank Radio Observatory in the UK, and the Soviet deep space facility in Eupatoria, Crimea. Accuracy was refined at each subsequent conjunction, primarily from measurements made from Goldstone and Eupatoria. The fact that rotation was retrograde was not confirmed until 1964.

Before radio observations in the 1960s, many believed that Venus contained a lush, Earth-like environment. This was due to the planet's size and orbital radius, which suggested a fairly Earth-like situation as well as to the thick layer of clouds which prevented the surface from being seen. Among the speculations on Venus were that it had a jungle-like environment or that it had oceans of either petroleum or carbonated water. However, microwave observations by C. Mayer et al.,[34] indicated a high-temperature source (600 K). Strangely, millimetre-band observations made by A. D. Kuzmin indicated much lower temperatures. Two competing theories explained the unusual radio spectrum, one suggesting the high temperatures originated in the ionosphere, and another suggesting a hot planetary surface.

Terrestrial radar mapping

After the Moon, Venus was the second object in the Solar System to be explored by radar from the Earth. The first studies were carried out in 1961 at NASA's Goldstone Observatory, part of the Deep Space Network. At successive inferior conjunctions, Venus was observed both by Goldstone and the National Astronomy and Ionosphere Center in Arecibo. The studies carried out were similar to the earlier measurement of transits of the meridian, which had revealed in 1963 that the rotation of Venus was retrograde (it rotates in the opposite direction to that in which it orbits the Sun). The radar observations also allowed astronomers to determine that the rotation period of Venus was 243.1 days, and that its axis of rotation was almost perpendicular to its orbital plane. It was also established that the radius of the planet was 6,052 kilometres (3,761 mi), some 70 kilometres (43 mi) less than the best previous figure obtained with terrestrial telescopes.

Interest in the geological characteristics of Venus was stimulated by the refinement of imaging techniques between 1970 and 1985. Early radar observations suggested merely that the surface of Venus was more compacted than the dusty surface of the Moon. The first radar images taken from the Earth showed very bright (radar-reflective) highlands christened Alpha Regio, Beta Regio, and Maxwell Montes; improvements in radar techniques later achieved an image resolution of 1–2 kilometres.

Observation by spacecraft

There have been numerous unmanned missions to Venus. Ten Soviet probes have achieved a soft landing on the surface, with up to 110 minutes of communication from the surface, all without return. Launch windows occur every 19 months, and from 1962 to 1985.

Early flybys

On February 12, 1961, the Soviet spacecraft Venera 1 was the first probe launched to another planet. An overheated orientation sensor caused it to malfunction, losing contact with Earth before its closest approach to Venus of 100,000 km. However, the probe was first to combine all the necessary features of an interplanetary spacecraft: solar panels, parabolic telemetry antenna, 3-axis stabilization, course-correction engine, and the first launch from parking orbit.

Global view of Venus in ultraviolet light done by Mariner 10.

The first successful Venus probe was the American Mariner 2 spacecraft, which flew past Venus in 1962, coming within 35,000 km. A modified Ranger Moon probe, it established that Venus has practically no intrinsic magnetic field and measured the planet's temperature range as 490 to 590 K.

The Soviet Union launched the Zond 1 probe to Venus in 1964, but it malfunctioned sometime after its May 16 telemetry session.

During another American flyby in 1967, Mariner 5 measured the strength of Venus's magnetic field. In 1974, Mariner 10 swung by Venus on its way to Mercury and took ultraviolet photographs of the clouds, revealing the extraordinarily high wind speeds in the Venusian atmosphere.

Early landings

Location of Soviet Venus landers

On March 1, 1966 the Venera 3 Soviet space probe crash-landed on Venus, becoming the first spacecraft to reach the surface of another planet. Its sister craft Venera 2 had failed due to overheating shortly before completing its flyby mission.

The descent capsule of Venera 4 entered the atmosphere of Venus on October 18, 1967, making it the first probe to return direct measurements from another planet's atmosphere. The capsule measured temperature, pressure, density and performed 11 automatic chemical experiments to analyze the atmosphere. It discovered that the atmosphere of Venus was 95% carbon dioxide, and in combination with radio occultation data from the Mariner 5 probe, showed that surface pressures were far greater than expected (75 to 100 atmospheres).

These results were verified and refined by the Venera 5 and Venera 6 in May 1969. But thus far, none of these missions had reached the surface while still transmitting. Venera 4's battery ran out while still slowly floating through the massive atmosphere, and Venera 5 and 6 were crushed by high pressure 18 km (60,000 ft) above the surface.

The first successful landing on Venus was by Venera 7 on December 15, 1970. It remained in contact with Earth for 23 minutes, relaying surface temperatures of 455 °C to 475 °C (855 °F to 885 °F). Venera 8 landed on July 22, 1972. In addition to pressure and temperature profiles, a photometer showed that the clouds of Venus formed a layer, ending over 35 kilometres (22 mi) above the surface. A gamma ray spectrometer analyzed the chemical composition of the crust.

Lander/orbiter pairs

Venera 9 and 10

Surface of Venus imaged by Venera 9 (top) and Venera 10 (bottom)

The Soviet probe Venera 9 entered orbit on October 22, 1975, becoming the first artificial satellite of Venus. A battery of cameras and spectrometers returned information about the planet's clouds, ionosphere and magnetosphere, as well as performing bi-static radar measurements of the surface. The 660 kg (1,455 lb) descent vehicle[35] separated from Venera 9 and landed, taking the first pictures of the surface and analyzing the crust with a gamma ray spectrometer and a densitometer. During descent, pressure, temperature and photometric measurements were made, as well as backscattering and multi-angle scattering (nephelometer) measurements of cloud density. It was discovered that the clouds of Venus are formed in three distinct layers. On October 25, Venera 10 arrived and carried out a similar program of study.

Pioneer Venus

In 1978, NASA sent two Pioneer spacecraft to Venus. The Pioneer mission consisted of two components, launched separately: an orbiter and a multiprobe. The Pioneer Venus Multiprobe carried one large and three small atmospheric probes. The large probe was released on November 16, 1978 and the three small probes on November 20. All four probes entered the Venusian atmosphere on December 9, followed by the delivery vehicle. Although not expected to survive the descent through the atmosphere, one probe continued to operate for 45 minutes after reaching the surface. The Pioneer Venus Orbiter was inserted into an elliptical orbit around Venus on December 4, 1978. It carried 17 experiments and operated until the fuel used to maintain its orbit was exhausted and atmospheric entry destroyed the spacecraft in August 1992.

Further Soviet missions

Also in 1978, Venera 11 and Venera 12 flew past Venus, dropping descent vehicles on December 21 and December 25 respectively. The landers carried colour cameras and a soil drill and analyzer, which unfortunately malfunctioned. Each lander made measurements with a nephelometer, mass spectrometer, gas chromatograph, and a cloud-droplet chemical analyzer using X-ray fluorescence that unexpectedly discovered a large proportion of chlorine in the clouds, in addition to sulfur. Strong lightning activity was also detected.

In 1981, the Soviet Venera 13 sent the first colour image of Venus's surface and analysed the X-ray fluorescence of an excavated soil sample. The probe operated for a record 127 minutes on the planet's hostile surface. Also in 1981, the Venera 14 lander detected possible seismic activity in the planet's crust.

In December 1984, during the apparition of Halley's Comet, the Soviet Union launched the two Vega probes to Venus. Vega 1 and Vega 2 encountered Venus in June 1985, each deploying a lander and an instrumented helium balloon. The balloon-borne aerostat probes floated at about 53 km altitude for 46 and 60 hours respectively, traveling about 1/3 of the way around the planet and allowing scientists to study the dynamics of the most active part of Venus's atmosphere. These measured wind speed, temperature, pressure and cloud density. More turbulence and convection activity than expected was discovered, including occasional plunges of 1 to 3 km in downdrafts.

The landing vehicles carried experiments focusing on cloud aerosol composition and structure. Each carried an ultraviolet absorption spectrometer, aerosol particle-size analyzers, and devices for collecting aerosol material and analyzing it with a mass spectrometer, a gas chromatograph, and an X-ray fluorescence spectrometer. The upper two layers of the clouds were found to be sulfuric acid droplets, but the lower layer is probably composed of phosphoric acid solution. The crust of Venus was analyzed with the soil drill experiment and a gamma ray spectrometer. As the landers carried no cameras on board, no images were returned from the surface. They would be the last probes to land on Venus for decades. The Vega spacecraft continued to rendezvous with Halley's Comet nine months later, bringing an additional 14 instruments and cameras for that mission.

The multiaimed Soviet Vesta mission, developed in cooperation with European countries for realisation in 1991–1994 but canceled due to the Soviet Union disbanding, included the delivering the balloons and small lander to Venus according to first plan.


Venera 15 and 16

In October 1983, Venera 15 and Venera 16 entered polar orbits around Venus. The images had a 1–2 kilometre (0.6–1.2 mile) resolution, comparable to those obtained by the best Earth radars. Venera 15 analyzed and mapped the upper atmosphere with an infrared Fourier spectrometer. From November 11, 1983 to July 10, 1984, both satellites mapped the northern third of the planet with synthetic aperture radar. These results provided the first detailed understanding of the surface geology of Venus, including the discovery of unusual massive shield volcanoes such as coronae and arachnoids. Venus had no evidence of plate tectonics, unless the northern third of the planet happened to be a single plate. The altimetry data obtained by the Venera missions had a resolution four times better than Pioneer's.

A portion of western Eistla Regio displayed in a three-dimensional perspective view acquired by the Magellan probe.


On August 10, 1990, the US Magellan probe, named after the explorer Ferdinand Magellan, arrived at its orbit around the planet and started a mission of detailed radar mapping at a frequency of 2.38 GHz.[36] Whereas previous probes had created low-resolution radar maps of continent-sized formations, Magellan mapped 98% of the surface with a resolution of approximately 100 m. The resulting maps were comparable to visible-light photographs of other planets, and are still the most detailed in existence. Magellan greatly improved scientific understanding of the geology of Venus: the probe found no signs of plate tectonics, but the scarcity of impact craters suggested the surface was relatively young, and there were lava channels thousands of kilometers long. After a four-year mission, Magellan, as planned, plunged into the atmosphere on October 11, 1994, and partly vaporized; some sections are thought to have hit the planet's surface.

Venus Express

Venus Express was a mission by the European Space Agency to study the atmosphere and surface characteristics of Venus from orbit. The design was based on ESA's Mars Express and Rosetta missions. The probe's main objective was the long-term observation of the Venusian atmosphere, which it is hoped will also contribute to an understanding of Earth's atmosphere and climate. It also made global maps of Venerean surface temperatures, and attempted to observe signs of life on Earth from a distance.

Venus Express successfully assumed a polar orbit on April 11, 2006. The mission was originally planned to last for two Venusian years (about 500 Earth days), but was extended to the end of 2014 until its propellant was exhausted. Some of the first results emerging from Venus Express include evidence of past oceans, the discovery of a huge double atmospheric vortex at the south pole, and the detection of hydroxyl in the atmosphere.


Akatsuki was launched on May 20, 2010, by JAXA, and was planned to enter Venusian orbit in December 2010. However, the orbital insertion maneuver failed and the spacecraft was left in heliocentric orbit. Another attempt will be made when it again approaches the planet in 2016. The probe will image the surface in ultraviolet, infrared, microwaves, and radio, and look for evidence of lightning and volcanism on the planet.

Recent flybys

Venus in 2007 by MESSENGER

Several space probes en route to other destinations have used flybys of Venus to increase their speed via the gravitational slingshot method. These include the Galileo mission to Jupiter and the Cassini–Huygens mission to Saturn (two flybys). Rather curiously, during Cassini's examination of the radio frequency emissions of Venus with its radio and plasma wave science instrument during both the 1998 and 1999 flybys, it reported no high-frequency radio waves (0.125 to 16 MHz), which are commonly associated with lightning. This was in direct opposition to the findings of the Soviet Venera missions 20 years earlier. It was postulated that perhaps if Venus did have lightning, it might be some type of low-frequency electrical activity, because radio signals cannot penetrate the ionosphere at frequencies below about 1 megahertz. At the University of Iowa, Donald Gurnett's examination of Venus's radio emissions by the Galileo spacecraft during its flyby in 1990 were interpreted at the time to be indicative of lightning. However the Galileo probe was over 60 times further from Venus than Cassini was during its flyby, making its observations substantially less significant. The mystery as to whether or not Venus does in fact have lightning in its atmosphere was not solved until 2007, when the scientific journal Nature published a series of papers giving the initial findings of Venus Express. It confirmed the presence of lightning on Venus and that it is more common on Venus than it is on Earth.[37][38]

MESSENGER passed by Venus twice on its way to Mercury. The first time, it flew by on October 24, 2006, passing 3000 km from Venus. As Earth was on the other side of the Sun, no data was recorded.[39] The second flyby was on July 6, 2007, where the spacecraft passed only 325 km from the cloudtops.[40]

Future missions

Artist's impression of a Stirling cooled Venus Rover

Future flybys en route to other destinations include the BepiColombo mission to Mercury, and the Solar Probe+ mission to the solar corona.

An older concept for a Venus aircraft

In 2003, NASA proposed the Venus In-Situ Explorer (VISE), originally proposed for a 2013 launch, currently a candidate to launch by 2022 as part of NASA's New Frontiers program. If selected, it would land and perform experiments on the surface of Venus, including taking a core sample and measuring its composition. ESA has proposed the Venus Entry Probe to be launched around the same time.

Also, the Venera-D spacecraft has been proposed by Roscosmos. It would be launched around 2024,[41] and its prime purpose is to map Venus's surface using more powerful radar than Magellan. The mission would also include a lander capable to function for a long duration on the surface.


The Venus Multiprobe Mission proposed sending 16 atmospheric probes into Venus.[42]

To overcome the severely inhospitable surface conditions, a team led by Geoffrey Landis of NASA's Glenn Research Center in Ohio has proposed the first surface rover in communication with a solar-powered aircraft. The aircraft would carry the mission's sensitive electronics in the relatively mild temperatures of Venus' upper atmosphere.[43] Another more recent rover design proposal by Landis uses a Stirling cooler powered by a nuclear power source to keep an electronics package at a relatively comfortable 200 °C (392 °F)[44] Some examples of proposed mission include VESAT, VESPER, Morning Star, VAMP, and VMPM.[45]

Landis also makes a case for Venus as a target for human colonization. At 50 km above the surface, the temperature range is 0-50 °C, the air pressure drops to 1 atmosphere, the gravity is 0.9 that of Earth, and the resources for life are plentiful.[46]

Timeline of Venus exploration

Objectives are listed in order of increasing difficulty: fly-by, impactor, orbiter, lander (soft), rover, sample return sources. Development unofficial names are listed in italics.

Past missions

Mission (1960–1969) Launch Arrival Termination Objective Result
Tyazhely Sputnik 4 February 1961 26 February 1961 Flyby Launch failure
Venera 1 12 February 1961 26 February 1961 Flyby Failure (contact lost before the 19 May 1962 100,000 km flyby)
Mariner 1 22 July 1962 22 July 1962 Flyby Launch failure
Venera 2MV-1 No.1 25 August 1962 28 August 1962 Lander Launch failure
Mariner 2 27 August 1962 14 December 1962 3 January 1963 Flyby Success (measurements suggested cool clouds and extremely hot surface)
Venera 2MV-1 No.2 1 September 1962 6 September 1962 Lander Launch failure
Venera 2MV-2 No.1 12 September 1962 14 September 1962 Flyby Launch failure
Kosmos 21 11 November 1962 14 November 1962 Flyby? Launch failure (unknown mission: technology test or fly-by)
Venera 3MV-1 No.2 19 February 1964 Flyby Launch failure
Kosmos 27 27 March 1964 Landing Launch failure
Zond 1 2 April 1964 14 July 1964 14 May 1964 Lander Failure (contact lost before a 100,000 km flyby)
Venera 2 12 November 1965 27 February 1966 Lander Failure (contact lost before a 24,000 km flyby)
Venera 3 16 November 1965 1 March 1966 Lander Failure (contact lost before the landing)
Kosmos 96 23 November 1965 Flyby Failure (did not leave Earth orbit)
Venera 4 12 June 1967 18 October 1967 18 October 1967 Lander Success (first chemical analysis of the Venusian atmosphere, measurements proved that Venus is extremely hot and its atmosphere far denser than expected)
Mariner 5 14 June 1967 19 October 1967 November 1967 Flyby Success (radio occultation atmospheric study, 3,990 km flyby)
Kosmos 167 17 June 1967 Lander Failure (failed in Earth orbit)
Venera 5 5 January 1969 16 May 1969 16 May 1969 Atmospheric probe Success (with knowledge about atmosphere gathered by Venera 4 its descent was optimised to analyze the atmosphere further deeper)
Venera 6 10 January 1969 17 May 1969 17 May 1969 Atmospheric probe Success
Mission (1970–1979) Launch Arrival Termination Objective Result
Venera 7 17 August 1970 15 December 1970 15 December 1970 Lander Success (first man-made spacecraft to successfully land on another planet and to transmit data from there back to Earth)
Kosmos 359 22 August 1970 Lander Failure
Venera 8 27 March 1972 22 July 1972 22 July 1972 Lander Success
Kosmos 482 31 March 1972 Lander Failure
Mariner 10 3 November 1973 5 February 1974 24 March 1975 Flyby Success (near-ultraviolet images of atmosphere shown unprecedented detail, 5,768 km flyby then continued towards Mercury)
Venera 9 8 June 1975 20 October 1975 ~December 25, 1975? Orbiter Success (explored cloud layers and atmospheric parameters)
22 October 1975 22 October 1975 Lander Success (first images from the surface of another planet)
Venera 10 14 June 1975 23 October 1975 Orbiter Success
25 October 1975 25 October 1975 Lander Success
Pioneer Venus Orbiter 20 March 1978 4 December 1978 August 1992 Orbiter Success (over thirteen years studying the atmosphere and mapping the surface with S-band radar, conducted joint mapping with the 1990 Magellan probe)
Pioneer Venus Multiprobe 8 August 1978 9 December 1978 9 December 1978 Bus Success
Large probe Success
North probe Success
Night probe Success
Day probe Success (continued to send radio signals back after impact, for over an hour)
Venera 11 9 September 1978 25 December 1978 February 1980 Flyby Success (as did Venera 12 found evidence of lightnings)
25 December 1978 25 December 1978 Lander Partial success (failed to deploy some instruments)
Venera 12 14 September 1978 19 December 1978 April 1980 Flyby Success
21 December 1978 21 December 1978 Lander Partial success (failed to deploy some instruments)
Mission (1980–1989) Launch Arrival Termination Objective Result
Venera 13 30 October 1981 1 March 1982 Flyby Success
1 March 1982 1 March 1982 Lander Success (first colour images from surface and X-ray fluorescence spectrometry soil characterisation)
Venera 14 4 November 1981 Flyby Success
5 March 1982 5 March 1982 Lander Success
Venera 15 2 June 1983 10 October 1983 ~July 1984 Orbiter Success (synthetic aperture radar on 15 and 16 probes allowed to map 25% of surface)
Venera 16 7 June 1983 11 October 1983 ~July 1984 Orbiter Success
Vega 1 15 December 1984 11 June 1985 30 January 1987 Flyby Success (intercepted the Halley comet next year)
11 June 1985 Lander Failed (surface experiments were inadvertently activated at 20 km from the surface)
13 June 1985 Balloon Success (first balloon in another planet, flew al least 11,600 km)
Vega 2 20 December 1984 15 June 1985 24 March 1987 Flyby Success (intercepted the Halley comet next year)
15 June 1985 Lander Success
17 June 1985 Balloon Success (flew al least 11,100 km)
Magellan 4 May 1989 10 August 1990 12 October 1994 Orbiter Success (provided high-resolution gravimetric data for 94% of the planet, Synthetic Aperture Radar generated a high resolution map of 98% of the surface)
Galileo 18 October 1989 10 February 1990 21 September 2003 Flyby Success (took some data on its route to Jupiter, 16,106 km maximum approach)
Mission (1990–1999) Launch Arrival Termination Objective Result
Cassini 15 October 1997 26 April 1998 and
24 June 1999
ongoing 2 Flybys Success (radio-frequency observations on its way to Saturn shown no signs of lightnings in Venus)
Mission (2000–2009) Launch Arrival Termination Objective Result
MESSENGER 3 August 2004 24 October 2006 and
5 June 2007
30 April 2015 2 Flybys Success (very close second flyby at 338 km in which visible, near-infrared, ultraviolet and X-ray spectrometry of the upper atmosphere was made simultaneously with the Venus Express probe, no observations in first flyby)
Venus Express 9 November 2005 11 April 2006 16 December 2014 Orbiter Success (detailed long-term observation of the Venusian atmosphere)
Mission (2000–2009) Launch Arrival Termination Objective Result

Current missions

Mission (2010–present)) Launch Arrival Termination Objective Result
Akatsuki 20 May 2010 ongoing Orbiter Uncertain (orbital insertion maneuver failed in 2010, will be tried again in late 2015)

Future missions

Name Estimated launch Elements Notes
BepiColombo August 2015 Flyby Planned Mercury orbiter.

Under study

Name Estimated launch Elements Notes
Venus Orbiter Mission[47] 2017–2018 Orbiter
VERITAS[48] 2021 Orbiter Discovery Program mission concept for produce high resolution topography and imaging of Venus surface.
DAVINCI[48] 2021 Atmospheric probe Discovery Program mission concept to study the chemical composition of Venus atmosphere during a 63-minute descent.
Venera-D[49] 2024 Orbiter To sense composition of the planet's atmosphere and its circulation patterns
Balloons Two balloons to sense acoustic and electrical activities of atmosphere
Microprobes Up to four atmospheric sensing probes launched from the balloons
Lander Designed for one-hour lifespan after touchdown in Tessera

See also


  1. ^ Jerome translated Septuagint heosphoros and Hebrew helel as lucifer, in Isaiah 14:12.


  1. ^
  2. ^
  3. ^
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^
  11. ^ See also the Greek article about the planet.
  12. ^
  13. ^
  14. ^
  15. ^
  16. ^
  17. ^
  18. ^
  19. ^
  20. ^
  21. ^
  22. ^
  23. ^
  24. ^
  25. ^
  26. ^
  27. ^
  28. ^
  29. ^ Leadbeater, C.W. The Masters and the Path Adyar, Madras, India: 1925—Theosophical Publishing House (in this book, Sanat Kumara is referred to as Lord of the World.) See in index under "Lord of the World".
  30. ^
  31. ^
  32. ^
  33. ^ The 20 weeks at the top stated by Juergens in The Velikovsky Affair is incorrect.
  34. ^
  35. ^
  36. ^ W. T. K. Johnson, "Magellan Imaging Radar Mission To Venus," PROCEEDINGS OF THE IEEE, Vol 19, No 6, June 1991, available from IEEE
  37. ^
  38. ^
  39. ^
  40. ^
  41. ^
  42. ^ Discovery Missions Under Consideration
  43. ^
  44. ^
  45. ^ Missions to Venus
  46. ^
  47. ^ http://www.asianage.com/india/after-mars-isro-aims-venus-probe-2-3-years-335
  48. ^ a b http://www.jpl.nasa.gov/news/news.php?feature=4727
  49. ^

External links

  • Double vortex at Venus South Pole unveiled!
  • Planetary Missions at National Space Science Data Center (NASA)
  • Soviet Venus-rover ХМ-ВД2
  • Exploring Venus by Solar Airplane - G. Landis