CAS number  N
ChemSpider  YesY
IUPHAR ligand
Jmol-3D images Image 1
Molecular formula C18H38NO5P
Molar mass 379.472
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N   YesY/N?)

Sphingosine-1-phosphate (S1P) is a signaling sphingolipid, also known as lysosphingolipid. It is also referred to as a bioactive lipid mediator. Sphingolipids at large form a class of lipids characterized by a particular aliphatic aminoalcohol, which is sphingosine.


  • Production 1
  • Function 2
  • Clinical significance 3
  • See also 4
  • Notes 5
  • References 6


Sphingosine can be released from ceramides, a process catalyzed by the enzyme ceramidase. Phosphorylation of sphingosine is catalyzed by sphingosine kinase, an enzyme ubiquitously found in the cytosol and endoplasmatic reticulum of various types of cells. S1P can be dephosphorylated to sphingosine by sphingosine phosphatases and can be irreversibly degraded by an enzyme, Sphingosine phosphate lyase.


S1P is a blood borne lipid mediator, in particular in association with lipoproteins such as high density lipoprotein (HDL).[1] It is less abundant in tissue fluids. This is referred to as the S1P gradient, which seems to have biological significance in immune cell trafficking.

Originally thought as an intracellular second messenger, it was discovered to be an extracellular ligand for G protein-coupled receptor S1PR1 in 1998. It is now known that S1P receptors are members of the Lysophospholipid receptor family. There are five described to date. Most of the biological effects of S1P are mediated by signaling through the cell surface receptors.

Although S1P is of importance in the entire human body, it is a major regulator of vascular and immune systems. In addition, it might be relevant in the

  • Vogler R et al. (2003). "Sphingosine-1-phosphate and its potentially paradoxical effects on critical parameters of cutaneous wound healing". J Invest Dermatol 120 (4): 693–700.  
  • MS Drug ONO-4641 Slows Brain Legions By 92%
  • Bollag W (2003). "Paradoxical effects of sphingosine-1-phosphate". J Invest Dermatol 120 (4): xiii–xiv.  
  • Lee, MJ et al. (1998). "Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1.". Science 279 (5356): 1552–1556.  


  1. ^ Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. http://www.ncbi.nlm.nih.gov/pubmed/19233866
  2. ^ Sharma, N et al. (2013). "Sphingosine-1-phosphate suppresses TLR-induced CXCL8 secretion from human T cells.". J Leukoc Biol 93 (4): 521–528.  
  3. ^ Wang, D et al. (2008). "S1P differentially regulates migration of human ovarian cancer and human ovarian surface epithelial cells.". Mol Cancer Ther 7 (7): 1993–2002.  
  4. ^ a b Morita, Y; Perez, GI; Paris, F; Miranda, SR; Ehleiter, D; Haimovitz-Friedman, A; Fuks, Z; Xie, Z; Reed, JC; Schuchman, EH; Kolesnick, RN; Tilly, JL (Oct 2000). "Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy.". Nature Medicine 6 (10): 1109–14.  
  5. ^ Jurisicova, A; Lee, H-J; D'Estaing, S G; Tilly, J; Perez, G I (27 January 2006). "Molecular requirements for doxorubicin-mediated death in murine oocytes". Cell Death and Differentiation 13 (9): 1466–1474.  
  6. ^ Perez, Gloria I.; Knudson, C. Michael; Leykin, Lucy; Korsmeyer, Stanley J.; Tilly, Jonathan L. (1 November 1997). "Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction". Nature Medicine 3 (11): 1228–1232.  
  7. ^ a b Paris, F; Perez, GI; Fuks, Z; Haimovitz-Friedman, A; Nguyen, H; Bose, M; Ilagan, A; Hunt, PA; Morgan, WF; Tilly, JL; Kolesnick, R (Sep 2002). "Sphingosine 1-phosphate preserves fertility in irradiated female mice without propagating genomic damage in offspring.". Nature Medicine 8 (9): 901–2.  
  8. ^ Kaya, H; Desdicioglu, R; Sezik, M; Ulukaya, E; Ozkaya, O; Yilmaztepe, A; Demirci, M (Mar 2008). "Does sphingosine-1-phosphate have a protective effect on cyclophosphamide- and irradiation-induced ovarian damage in the rat model?". Fertility and Sterility 89 (3): 732–5.  
  9. ^ a b Zelinski, M. B.; Murphy, M. K.; Lawson, M. S.; Jurisicova, A.; Pau, K. Y. F.; Toscano, N. P.; Jacob, D. S.; Fanton, J. K.; Casper, R. F.; Dertinger, S. D.; Tilly, J. L. (2011). "In vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman primates". Fertility and Sterility 95 (4): 1440–1445.e1–1445.  
  10. ^ Hancke, K; Strauch, O; Kissel, C; Göbel, H; Schäfer, W; Denschlag, D (Jan 2007). "Sphingosine 1-phosphate protects ovaries from chemotherapy-induced damage in vivo.". Fertility and Sterility 87 (1): 172–7.  
  11. ^ Byrne, J; Fears, TR; Gail, MH; Pee, D; Connelly, RR; Austin, DF; Holmes, GF; Holmes, FF; Latourette, HB; Meigs, JW (Mar 1992). "Early menopause in long-term survivors of cancer during adolescence.". American journal of obstetrics and gynecology 166 (3): 788–93.  
  12. ^ Blumenfeld, Zeev (1 September 2012). "Preservation of ovarian function and fertility despite gonadotoxic chemotherapy". Expert Review of Endocrinology & Metabolism 7 (5): 567–576.  
  13. ^ Roness, H.; Kalich-Philosoph, L.; Meirow, D. (2014). "Prevention of chemotherapy-induced ovarian damage: possible roles for hormonal and non-hormonal attenuating agents". Human Reproduction Update 20 (5): 759–774.  
  14. ^ Baumrucker, T et al. (2007). "FTY720, an immunomodulatory sphingolipid mimetic: translation of a novel mechanism into clinical benefit in multiple sclerosis.". Expert Opin Investig Drugs 16 (3): 283–289.  
  15. ^ Ludwig Kappos et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis, N Engl J Med 362:387, Feb. 4, 2010
  16. ^ Jeffrey A. Cohen, et al., Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis, N Engl J Med 362:402, Feb. 4, 2010
  17. ^ Bolick DT, Srinivasan S, Kim KW, Hatley ME, Clemens JJ, Whetzel A et al. (2005). "Sphingosine-1-phosphate prevents tumor necrosis factor-{alpha}-mediated monocyte adhesion to aortic endothelium in mice.". Arterioscler Thromb Vasc Biol 25 (5): 976–81.  
  18. ^ Whetzel AM, Bolick DT, Srinivasan S, Macdonald TL, Morris MA, Ley K et al. (2006). "Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor.". Circ Res 99 (7): 731–9.  
  19. ^ Manggau M et al. (2001). "1Alpha,25-dihydroxyvitamin D3 protects human keratinocytes from apoptosis by the formation of sphingosine-1-phosphate". J Invest Dermatol 117 (5): 1241–9.  


See also

Lpath Inc http://www.lpath.com/ has produced and optimized a monoclonal anti-S1P antibody (Sphingomab). Sphingomab can absorb S1P from the extracellular fluid, thereby lowering the effective concentration of S1P. The ocular formulation of humanized Sphingomab is called ISONEP, while the systemic formulation is known as ASONEP.

ONO-4641 (a drug of Ono Pharmaceutical Co., Ltd.)is a sphingosine-1-phosphate (S1P) receptor agonist which keeps lymphocytes in lymph nodes and thereby inhibits the infiltration of lymphocytes into lesions. The compound is therefore expected to be a drug for the treatment of auto-immune diseases such as multiple sclerosis, which is regarded as an intractable disease.

Although S1P is active at very low concentrations, bioavailability of the compound in human skin is a concern. Therefore, a topical formulation based on specific drug carriers has been considered inevitable.

In addition, S1P modulates the proliferation of skin cells. This in particular applies to keratinocytes[19] while fibroblasts are not addressed in this way, apart from cell growth and differentiation While S1P suppresses epidermal proliferation as the glucocorticoids do, it differs from them in so far, as proliferation of dermal fibroblasts is not reduced. In fact, S1P even activates fibroblast-derived extracellular matrix protein production. Due to the hyperproliferative action against epidermal cells, S1P has been considered as an active pharmaceutical ingredient for hyperproliferative skin diseases, in particular, psoriasis vulgaris and acne vulgaris.

[18][17] S1P, as well as FTY720, has been shown to have anti-inflammatory properties at low concentrations and prevent monocyte:endothelial interactions in aorta, possibly through the S1P1 receptor.[16][15] The drug

Administration of S1P has been shown to protect oocytes from chemotherapeutic agents in vitro,[4][5][6] as well as in vivo from chemotherapeutic and radiation therapies.[4][7][8][9] which otherwise induce apoptosis of the cells. S1P has protected ovarian tissue xenografts in SCID mouse models from radiation induced atresia.[9] In animal models these protected oocytes have been used to produce healthy live young.[7][10] Radiotherapies and chemotherapies can cause apoptosis of ovarian follicles, causing premature ovarian failure,[11] and so S1P is of great interest in fertility preservation.[12] However, its mechanism of inhibiting the sphingomyelin apoptotic pathway may also interfere with the apoptosis action of chemotherapy drugs.[13]

The levels of S1P ( in a range of 5-40 µmol/L ) are 5 to 10 times up-regulated in ovarian cancer patients ascites. S1P at this physiological concentration stimulates migration and invasion of epithelial ovarian cancer cells but inhibits migration of normal ovarian surface epithelial cells.[3] Most (more than 90%) ovarian cancers arise from the epithelium of the ovary. Therefore, extracellular S1P could have an important role in cancer progression by promoting migration of epithelial ovarian cancer cells.

Clinical significance