Succinyl-CoA

Succinyl-CoA

Succinyl-CoA
Identifiers
 N
ChEBI  Y
ChemSpider  Y
Jmol-3D images Image
MeSH
PubChem
Properties
C25H40N7O19P3S
Molar mass 867.608
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N  (: Y/N?)

Succinyl-Coenzyme A, abbreviated as Succinyl-CoA or SucCoA, is a combination of succinic acid and coenzyme A.

Contents

  • Sources 1
  • Fate 2
  • Formation 3
  • Interactive pathway map 4
  • References 5

Sources

It is an important intermediate in the citric acid cycle, where it is synthesized from α-Ketoglutarate by α-ketoglutarate dehydrogenase through decarboxylation. During the process, coenzyme A is added.

With B12 as an enzymatic cofactor, it is also synthesized from propionyl CoA, the odd-numbered fatty acid, which cannot undergo beta-oxidation.[1] Propionyl-CoA is carboxylated to D-methylmalonyl-CoA, isomerized to L-methylmalonyl-CoA, and rearranged to yield succinyl-CoA via a vitamin B12-dependent enzyme. Succinyl-CoA is an intermediate of the citric acid cycle and can be readily incorporated there.

Fate

It is converted into succinate through the hydrolytic release of coenzyme A by succinyl-CoA synthetase (succinate thiokinase).

Another fate of succinyl-CoA is porphyrin synthesis, where succinyl-CoA and glycine are combined by ALA synthase to form δ-aminolevulinic acid (dALA).

Formation

Succinyl CoA can be formed from methylmalonyl CoA through the utilization of deoxyadenosyl-B12 (deoxyadenosylcobalamin) by the enzyme methylmalonyl-CoA mutase. This reaction, which requires vitamin B12 as a cofactor, is important in the catabolism of some branched-chain amino acids as well as odd-chain fatty acids.

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

}px; border:solid #ccc 1px; background-color:white;">
|}px|alt=TCA Cycle edit]]
TCA Cycle edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "TCACycle_WP78". 

References

  1. ^ Halarnkar PP, Blomquist GJ (1989). "Comparative aspects of propionate metabolism". Comp. Biochem. Physiol., B 92 (2): 227–31.