TCF3

TCF3

Transcription factor 3
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols  ; E2A; E47; ITF1; TCF-3; VDIR; bHLHb21
External IDs GeneCards:
RNA expression pattern
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

Transcription factor 3 (E2A immunoglobulin enhancer-binding factors E12/E47), also known as TCF3, is a protein that in humans is encoded by the TCF3 gene.[1][2][3] TCF3 has been shown to directly enhance Hes1 (a well-known target of Notch signaling) expression.[4]


Interactions

TCF3 has been shown to interact with ID3,[5][6] LYL1,[7] Twist transcription factor,[8] PCAF,[9] LMX1A,[10] LDB1,[11] ELK3,[12] CBFA2T3,[11] MyoD,[6][13] EP300,[9] CREB-binding protein,[9] MAPKAPK3,[14] Myogenin,[6][15] TAL1[11][16] and UBE2I.[17]

References

  1. ^ "Entrez Gene: TCF3". 
  2. ^ Henthorn P, McCarrick-Walmsley R, Kadesch T (February 1990). "Sequence of the cDNA encoding ITF-1, a positive-acting transcription factor". Nucleic Acids Res. 18 (3): 677.  
  3. ^ Kamps MP, Murre C, Sun XH, Baltimore D (February 1990). "A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL". Cell 60 (4): 547–55.  
  4. ^ E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment
  5. ^ Deed, R W; Jasiok M; Norton J D (April 1998). "Lymphoid-specific expression of the Id3 gene in hematopoietic cells. Selective antagonism of E2A basic helix-loop-helix protein associated with Id3-induced differentiation of erythroleukemia cells". J. Biol. Chem. (UNITED STATES) 273 (14): 8278–86.  
  6. ^ a b c Langlands, K; Yin X; Anand G; Prochownik E V (August 1997). "Differential interactions of Id proteins with basic-helix-loop-helix transcription factors". J. Biol. Chem. (UNITED STATES) 272 (32): 19785–93.  
  7. ^ Miyamoto, A; Cui X; Naumovski L; Cleary M L (May 1996). "Helix-loop-helix proteins LYL1 and E2a form heterodimeric complexes with distinctive DNA-binding properties in hematolymphoid cells". Mol. Cell. Biol. (UNITED STATES) 16 (5): 2394–401.  
  8. ^ El Ghouzzi, V; Legeai-Mallet L, Aresta S, Benoist C, Munnich A, de Gunzburg J, Bonaventure J (March 2000). "Saethre-Chotzen mutations cause TWIST protein degradation or impaired nuclear location". Hum. Mol. Genet. (ENGLAND) 9 (5): 813–9.  
  9. ^ a b c Bradney, Curtis; Hjelmeland Mark; Komatsu Yasuhiko; Yoshida Minoru; Yao Tso-Pang; Zhuang Yuan (January 2003). "Regulation of E2A activities by histone acetyltransferases in B lymphocyte development". J. Biol. Chem. (United States) 278 (4): 2370–6.  
  10. ^ Johnson, J D; Zhang W; Rudnick A; Rutter W J; German M S (July 1997). "Transcriptional synergy between LIM-homeodomain proteins and basic helix-loop-helix proteins: the LIM2 domain determines specificity". Mol. Cell. Biol. (UNITED STATES) 17 (7): 3488–96.  
  11. ^ a b c Goardon, Nicolas; Lambert Julie A; Rodriguez Patrick; Nissaire Philippe; Herblot Sabine; Thibault Pierre; Dumenil Dominique; Strouboulis John; Romeo Paul-Henri; Hoang Trang (January 2006). "ETO2 coordinates cellular proliferation and differentiation during erythropoiesis". EMBO J. (England) 25 (2): 357–66.  
  12. ^ Maira, S M; Wurtz J M; Wasylyk B (November 1996). "Net (ERP/SAP2) one of the Ras-inducible TCFs, has a novel inhibitory domain with resemblance to the helix-loop-helix motif". EMBO J. (ENGLAND) 15 (21): 5849–65.  
  13. ^ Maleki, S J; Royer C A; Hurlburt B K (June 1997). "MyoD-E12 heterodimers and MyoD-MyoD homodimers are equally stable". Biochemistry (UNITED STATES) 36 (22): 6762–7.  
  14. ^ Neufeld, B; Grosse-Wilde A; Hoffmeyer A; Jordan B W; Chen P; Dinev D; Ludwig S; Rapp U R (July 2000). "Serine/Threonine kinases 3pK and MAPK-activated protein kinase 2 interact with the basic helix-loop-helix transcription factor E47 and repress its transcriptional activity". J. Biol. Chem. (UNITED STATES) 275 (27): 20239–42.  
  15. ^ Chakraborty, T; Martin J F; Olson E N (September 1992). "Analysis of the oligomerization of myogenin and E2A products in vivo using a two-hybrid assay system". J. Biol. Chem. (UNITED STATES) 267 (25): 17498–501.  
  16. ^ Hsu, H L; Wadman I; Baer R (April 1994). "Formation of in vivo complexes between the TAL1 and E2A polypeptides of leukemic T cells".  
  17. ^ Huggins, G S; Chin M T; Sibinga N E; Lee S L; Haber E; Lee M E (October 1999). "Characterization of the mUBC9-binding sites required for E2A protein degradation". J. Biol. Chem. (UNITED STATES) 274 (40): 28690–6.  

Further reading

  • LeBrun DP (2004). "E2A basic helix-loop-helix transcription factors in human leukemia". Front. Biosci. 8: s206–22.